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Abstract

A twisted generalization of Lie-Yamaguti algebras, called Hom-Lie-

Yamaguti algebras, is defined. Hom-Lie-Yamaguti algebras generalize

multiplicative Hom-Lie triple systems (and subsequently ternary mul-

tiplicative Hom-Nambu algebras) and Hom-Lie algebras in the same

way as Lie-Yamaguti algebras generalize Lie triple systems and Lie

algebras. It is shown that the category of (multiplicative) Hom-Lie-

Yamaguti algebras is closed under twisting by self-morphisms. Con-

structions of Hom-Lie-Yamaguti algebras from ordinary Lie-Yamaguti

algebras and Malcev algebras are given. Using the well-known classifi-

cation of real two-dimensional Lie-Yamaguti algebras, examples of real

two-dimensional Hom-Lie-Yamaguti algebras are given.
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1 Introduction

Using the Bianchi identities, K. Nomizu [15] characterized, by some identities

involving the torsion and the curvature, reductive homogeneous spaces with

some canonical connection. K. Yamaguti [19] gave an algebraic interpretation

of these identities by considering the torsion and curvature tensors of Nomizu’s

canonical connection as a bilinear and a trilinear algebraic operations satisfying

some axioms, and thus defined what he called a “general Lie triple system”.

M. Kikkawa [8] used the term “Lie triple algebra” for such an algebraic object.

More recently, M.K. Kinyon and A. Weinstein [9] introduced the term “Lie-

Yamaguti algebra” for this object.

A Lie-Yamaguti algebra (V, ∗, {, , }) is a vector space V together with a

binary operation ∗ : V ×V → V and a ternary operation {, , } : V ×V ×V → V

such that

(LY1) x ∗ y = −y ∗ x,

(LY2) {x, y, z} = −{y, x, z},

(LY3) �(x,y,z)[(x ∗ y) ∗ z + {x, y, z}] = 0,

(LY4) �(x,y,z){x ∗ y, z, u} = 0,

(LY5) {x, y, u ∗ v} = {x, y, u} ∗ v + u ∗ {x, y, v},

(LY6) {x, y, {u, v, w}} = {{x, y, u}, v, w}+ {u, {x, y, v}, w}

+{u, v, {x, y, w}},

for all u, v, w, x, y, z in V and �(x,y,z) denotes the sum over cyclic permutation

of x, y, z.

In [2] the notation “LY-algebra” is used for “Lie-Yamaguti algebra”. So,

likewise, below we will write “Hom-LY algebra” for “Hom-Lie-Yamaguti alge-

bra”.

Observe that if x∗y = 0, for all x, y in V , then (V, ∗, {, , }) reduces to a Lie

triple system (V, {, , }) as defined in [18]. From the other hand, if {x, yz, } = 0

for all x, y, z in V , then (V, ∗, {, , }) is a Lie algebra (V, ∗). Originally, N.

Jacobson [7] defined a Lie triple system as a submodule of an associative

algebra that is closed under the iterated commutator bracket.

In this paper we consider a Hom-type generalization of LY algebras that we

call Hom-LY algebras. Roughly, a Hom-type generalization of a given type of

algebras is defined by twisting the defining identities of that type of algebras by

a self-map in such a way that, when the twisting map is the identity map, one

recovers the original type of algebras. The systematic study of Hom-algebras

was initiated by A. Makhlouf and S.D. Silvestrov [13], while D. Yau [23] gave a
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general construction method of Hom-type algebras starting from usual algebras

and a twisting self-map. For information on various types of Hom-algebras,

one may refer to [1], [6], [11]-[13], [22]-[25].

A Hom-type generalization of n-ary Lie algebras, n-ary Nambu algebras

and n-ary Nambu-Lie algebras (i.e. Filippov n-ary algebras) called n-ary Hom-

Lie algebras, n-ary Hom-Nambu algebras and n-ary Hom-Nambu-Lie algebras

respectively, is considered in [1]. Such a generalization is extended to the one

of Hom-Lie triple systems and Hom-Jordan triple systems in [25]. We point

out that the class of (multiplicative) Hom-LY algebras encompasses the ones

of multiplicative ternary Hom-Nambu algebras, multiplicative Hom-Lie triple

systems (hence Jordan and Lie triple systems), Hom-Lie algebras (hence Lie

algebras) and LY algebras.

The rest of the paper is organized as follows. In section 2 some basic facts

on Hom-algebras and n-ary Hom-algebras are recalled. The emphasis point

here is that the definition of a Hom-triple system (Definition 2.3) is more re-

strictive than the D. Yau’s in [25]. However, with this vision of a Hom-triple

system, we point out that any non-Hom-associative algebra (i.e. nonasso-

ciative Hom-algebra or Hom-nonassociative algebra) has a natural structure

of (multiplicative) Hom-triple system (this is the Hom-counterpart of a simi-

lar well-known result connecting nonassociative algebras and triple systems).

Then we give the definition of a Hom-LY algebra and make some observations

on its relationships with some types of ternary Hom-algebras and with LY

algebras. In section 3 we show that the category of Hom-LY algebras is closed

under twisting by self-morphisms (Theorem 3.1). Subsequently, we show a

way to construct Hom-LY algebras from LY algebras (or Malcev algebras) by

twisting along self-morphisms (Corollary 3.2 and Corollary 3.3); this is an ex-

tension to binary-ternary algebras of a result due to D. Yau ([23], Theorem

2.3. Such an extension is first mentioned in [6], Corollary 4.5). In section 4

examples of real two-dimensional Hom-LY algebras are constructed, relaying

on the classification of (real) two-dimensional LY algebras [5], [21].

All vector spaces and algebras throughout are considered over a ground

field K of characteristic 0.

2 Ternary Hom-algebras. Definitions

We recall some basic facts about Hom-algebras, including ternary Hom-Nambu

algebras. We note that the definition of a Hom-triple system given here (see

Definition 2.3) is slightly more restrictive than the one given by D. Yau [25].
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Then we give the definition of the main object of this paper (see Definition 2.6)

and show its relationships with known structures such as ternary Hom-Nambu

algebras, Hom-Lie triple systems, Hom-Lie algebras or Lie-Yamaguti algebras.

For definitions of n-ary Hom-algebras (n-ary Hom-Nambu and Hom-Nambu-

Lie algebras, n-ary Hom-Lie algebras, etc.) we refer to [1], [25]. For information

on origins of Nambu algebras, one may refer to [14], [17]. Here, for our purpose,

we restrict our concern to ternary Hom-algebras. In fact, as we shall see be-

low, a Hom-Lie-Yamaguti algebra is some multiplicative ternary Hom-Nambu

algebra with an additional binary anticommutative operation satisfying some

compatibility conditions.

Definition 2.1. ([25]). A ternary Hom-algebra (V, [, , ], α = (α1, α2))

consists of a K-module V , a trilinear map [, , ] : V × V × V → V , and

linear maps αi : V → V , i = 1, 2, called the twisting maps. The al-

gebra (V, [, , ], α = (α1, α2)) is said multiplicative if α1 = α2 := α and

α([x, y, z]) = [α(x), α(y), α(z)] for all x, y, z ∈ V .

For convenience, we assume throughout this paper that all Hom-algebras

are multiplicative.

Definition 2.2. ([1]). A (multiplicative) ternary Hom-Nambu al-

gebra is a (multiplicative) ternary Hom-algebra (V, [, , ], α) satisfying

[α(x), α(y), [u, v, w]] = [[x, y, u], α(v), α(w)] + [α(u), [x, y, v], α(w)]

+[α(u), α(v), [x, y, w]], (2.1)

for all u, v, w, x, y ∈ V .

The condition (2.1) is called the ternary Hom-Nambu identity. In general,

the ternary Hom-Nambu identity reads:

[α1(x), α2(y), [u, v, w]] = [[x, y, u], α1(v), α2(w)] + [α1(u), [x, y, v], α2(w)]

+[α1(u), α2(v), [x, y, w]],

for all u, v, w, x, y ∈ V , where α1 and α2 are linear self-maps of V .

Definition 2.3. A (multiplicative) Hom-triple system is a (multi-

plicative) ternary Hom-algebra (V, [, , ], α) such that

(i) [u, v, w] = −[v, u, w],
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(ii) �(u,v,w)[u, v, w] = 0,

for all u, v, w ∈ V .

Remark. A more general definition of a Hom-triple system is given by

D. Yau [25] without the requirements (i), (ii) as in Definition 2.3 above. Our

definition here is motivated by the concern of giving a Hom-type analogue of the

relationships between nonassociative algebras and triple systems (see Remark

below after Proposition 2.4).

A Hom-algebra in which the Hom-associativity is not assumed is called

a nonassociative Hom-algebra [12] or a Hom-nonassociative algebra [22] (the

expression of “non-Hom-associative” Hom-algebra is used in [6] for that type

of Hom-algebras). With the notion of a Hom-triple system as above, we have

the following

Proposition 2.4. Any non-Hom-associative Hom-algebra is a Hom-triple

system.

Proof. Let (A, ·, α) be a non-Hom-associative algebra. Then

(A, [, ], as(, , ), α) is a Hom-Akivis algebra with respect to [x, y] := x · y − y · x

(commutator) and as(x, y, z) := xy ·α(z)−α(x) · yz (Hom-associator), i.e. the

Hom-Akivis identity

�(x,y,z)[[x, y], α(z)] = �(x,y,z)as(x, y, z) − �(x,y,z)as(y, x, z)

holds for all x, y, z in A ([6]). Now define

[x, y, z] := [[x, y], α(z)] − as(x, y, z) + as(y, x, z)

for all x, y, z in A. Then [x, y, z] = −[y, x, z] and the Hom-Akivis identity

implies that �(x,y,z)[x, y, z] = 0. Thus (A, [, , ], α) is a Hom-triple system. �

Remark. For α = Id (the identity map), we recover the triple system with

ternary operation [[x, y], z]−(x, y, z)+(y, x, z) that is associated to each nonas-

sociative algebra, since any nonassociative algebra has a natural Akivis algebra

structure with respect to the commutator and associator operations [x, y] and

(x, y, z), for all x, y, z (see, e.g., remarks and references in [6]).

Definition 2.5. ([25]). A Hom-Lie triple system is a Hom-triple system

(V, [, , ], α) satisfying the ternary Hom-Nambu identity (2.1).

When α = Id, a Hom-Lie triple system reduces to a Lie triple system.
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We now give the definition of the basic object of this paper.

Definition 2.6. A Hom-Lie-Yamaguti algebra (Hom-LY algebra for

short) is a quadruple (L, ∗, {, , }, α) in which L is a K-vector space, “∗” a

binary operation and “{, , }” a ternary operation on L, and α : L → L a linear

map such that

(HLY1) α(x ∗ y) = α(x) ∗ α(y),

(HLY2) α({x, y, z}) = {α(x), α(y), α(z)},

(HLY3) x ∗ y = −y ∗ x,

(HLY4) {x, y, z} = −{y, x, z},

(HLY5) �(x,y,z)[(x ∗ y) ∗ α(z) + {x, y, z}] = 0,

(HLY6) �(x,y,z){x ∗ y, α(z), α(u)} = 0,

(HLY7) {α(x), α(y), u ∗ v} = {x, y, u} ∗ α2(v) + α2(u) ∗ {x, y, v},

(HLY8) {α2(x), α2(y), {u, v, w}} = {{x, y, u}, α2(v), α2(w)}

+{α2(u), {x, y, v}, α2(w)}

+{α2(u), α2(v), {x, y, w}},

for all u, v, w, x, y, z in L.

Note that the conditions (HLY1) and (HLY2) mean the multiplicativity of

(L, ∗, {, , }, α).

Remark. (1) If α = Id, then the Hom-LY algebra (L, ∗, {, , }, α) reduces

to a LY algebra (L, ∗, {, , }) (see (LY1)-(LY6)).

(2) If x ∗ y = 0, for all x, y ∈ L, then (L, ∗, {, , }, α) becomes a Hom-Lie

triple system (L, {, , }, α2) and, subsequently, a ternary Hom-Nambu algebra

(since, by Definition 2.5, any Hom-Lie triple system is automatically a ternary

Hom-Nambu algebra).

(3) If {x, y, z} = 0 for all x, y, z ∈ L, then the Hom-LY algebra

(L, ∗, {, , }, α) becomes a Hom-Lie algebra (L, ∗, α).

3 Constructions of Hom-Lie-Yamaguti algebras

In this section we consider construction methods for Hom-LY algebras. These

methods allow to find examples of Hom-LY algebras starting from ordinary

LY algebras or even from Malcev algebras.

First, as the main tool, we show that the category of (multiplicative) Hom-

LY algebras is closed under self-morphisms.
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Theorem 3.1. Let Aα := (A, ∗, {, , }, α) be a Hom-LY algebra and let β be

an endomorphism of the algebra (A, ∗, {, , }) such that βα = αβ. Let β0 = id

and, for any n ≥ 1, βn := β ◦ βn−1. Define on A the operations

x ∗β y := βn(x ∗ y),

{x, y, z}β := β2n({x, y, z})

for all x, y, z in A. Then Aβn := (A, ∗β, {, , }β, β
nα) is a Hom-LY algebra, with

n ≥ 1.

Proof. First, we observe that the condition βα = αβ implies βnα = αβn,

n ≥ 1. Next we have

(βnα)(x ∗β y) = (βnα)(βn(x) ∗ βn(y)) = βn((αβn)(x) ∗ (αβn)(y))

= (αβn)(x)∗β (αβn)(y) = (βnα)(x)∗β (βnα)(y) and we get (HLY1) for Aβn .

Likewise, the condition βα = αβ implies (HLY2). The identities (HLY3) and

(HLY4) for Aβn follow from the skew-symmetry of “∗” and “{, , }“ respectively.

Consider now �(x,y,z)((x ∗β y) ∗β (βnα)(z)) + �(x,y,z){x, y, z}β. Then

�(x,y,z)((x ∗β y) ∗β (βnα)(z)) + �(x,y,z){x, y, z}β

= �(x,y,z)[β
n(βn(x ∗ y) ∗ βn(α(z)))]

+ �(x,y,z)[β
2n({x, y, z})]

= �(x,y,z)[β
2n((x ∗ y) ∗ α(z))] + �(x,y,z)[β

2n({x, y, z})]

= β2n(�(x,y,z)[(x ∗ y) ∗ α(z) + {x, y, z}])

= β(0) (by (HLY5) for Aα)

= 0

and thus we get (HLY5) for Aβn . Next,

{x ∗β y, (βnα)(z), (βnα)(u)}β = {β3n(x ∗ y), β3n(α(z)), β3n(α(u))}

= β3n({x ∗ y, α(z), α(u)}).

Therefore

�(x,y,z) {x ∗β y, (βnα)(z), (βnα)(u)}β

= �(x,y,z)[β
3n({x ∗ y, α(z), α(u)})

= β3n(�(x,y,z){x ∗ y, α(z), α(u)}

= β3n(0) (by (HLY6) for Aα)

= 0

so that we get (HLY6) for Aβn . Further, using (HLY7) for Aα and condition

αβ = βα, we compute

{(βnα)(x), (βnα)(y), u ∗β v}β = β3n({α(x), α(y), u ∗ v})

= β3n({x, y, u} ∗ α2(v) + α2(u) ∗ {x, y, v}) = βn(β2n({x, y, u}) ∗ (β2nα2)(v))
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+βn((β2nα2)(u) ∗ β2n({x, y, v})) = {x, y, u}β ∗β (β2nα2)(v)

+(β2nα2)(u) ∗β {x, y, v}β

= {x, y, u}β ∗β (βnα)2(v) + (βnα)2(u) ∗β {x, y, v}β.

Thus (HLY7) holds for Aβn . Using repeatedly the condition αβ = βα and the

identity (HLY8) for Aα, the verification of (HLY8) for Aβn is as follows.

{(βnα)2(x), (βnα)2(y), {u, v, w}β}β

= {(β2nα2)(x), (β2nα2)(y), {u, v, w}β}β

= β2n({(β2nα2)(x), (β2nα2)(y), β2n({u, v, w})})

= β4n({α2(x), α2(y), {u, v, w}})

= β4n({α2(u)), α2(v)), {x, y, w}})

+ β4n({{x, y, u}, α2(v), α2(w)})

+ β4n({α2(u), {x, y, v}, α2(w)}

= β2n({(β2nα2)(u), (β2nα2)(v), β2n({x, y, w})})

+ β2n({β2n({x, y, u}), (β2nα2)(v), (β2nα2)(w)})

+ β2n({(β2nα2)(u), β2n({x, y, v}), (β2nα2)(w)})

= {(βnα)2(u), (βnα)2(v), {x, y, w}β}β

+ {{x, y, u}β, (β
nα)2(v), (βnα)2(w)}β

+ {(βnα)2(u), {x, y, v}β, (β
nα)2(w)}β.

Thus (HLY8) holds for Aβn. Therefore, we get that Aβn is a Hom-LY algebra.

This finishes the proof. �

From Theorem 3.1 we have the following construction method of Hom-LY

algebras from LY algebras (this yields examples of Hom-LY algebras). This

method is an extension to binary-ternary algebras of a result due to D. Yau

([23], Theorem 2.3), giving a general construction method of Hom-algebras

from their corresponding untwisted algebras. Such an extension to binary-

ternary algebras is first mentioned in [6], Corollary 4.5.

Corollary 3.2. Let (A, ∗, [, , ]) be a LY algebra and β an endomorphism

of (A, ∗, [, , ]). If define on A a binary operation ”∗̃“ and a ternary operation

”{, , }“ by

x∗̃y := β(x ∗ y),

{x, y, z} := β2([x, y, z]),

then (A, ∗̃, {, , }, β) is a Hom-LY algebra.
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Proof. The proof follows if observe that Corollary 3.2 is Theorem 3.1 when

α = Id and n = 1. �

A Malcev algebra [16] is an anticommutative algebra (A, ∗) such that the

Malcev identity

J(x, y, x ∗ z) = J(x, y, z) ∗ x

holds for all x, y, z in A, where J(u, v, w) := �(u,v,w)(u ∗ v) ∗ w in (A, ∗).

Corollary 3.3. Let (A, ∗) be a Malcev algebra and β any endomorphism

of (A, ∗). Define on A the operations

x∗̃y := β(x ∗ y),

{x, y, z} := β2((x ∗ y) ∗ z − (y ∗ z) ∗ x − (z ∗ x) ∗ y).

Then (A, ∗̃, {, , }, β) is a Hom-LY algebra.

Proof. If consider on A the ternary operation [x, y, z] :=

(x∗ y) ∗ z− (y ∗ z) ∗x− (z ∗x)∗ y, ∀x, y, z ∈ A, then (A, ∗, [, , ]) is a LY algebra

[20]. Moreover, since β is an endomorphism of (A, ∗), we have β([x, y, z]) =

(β(x)∗β(y))∗β(z)−(β(y)∗β(z))∗β(x)−(β(z)∗β(x))∗β(y) = [β(x), β(y), β(z)]

so that β is also an endomorphism of (A, ∗, [, , ]). Then Corollary 3.2 implies

that (A, ∗̃, {, , }, β) is a Hom-LY algebra. �

4 Examples of 2-dimensional Hom-Lie-Yamaguti

algebras

In this section, algebras are considered over the ground field of real numbers.

Using the classification of real 2-dimensional LY algebras ([5], Corollary 2.7),

we classify all the algebra morphisms of each of the proper (i.e. nontrivial) 2-

dimensional LY algebras and then we obtain their corresponding 2-dimensional

Hom-LY algebras (hence we give some application of Corollary 3.2).

For completeness, we recall that any 2-dimensional real LY algebra is iso-

morphic to one of the algebras (with basis {u, v}) of the following types:

(T1) u ∗ v = 0, [u, v, u] = λu + µv, [u, v, v] = γu − λv;

(T2) u ∗ v = u, [u, v, u] = 0, [u, v, v] = ku;

(T3) u ∗ v = u + v, [u, v, u] = 0, [u, v, v] = 0;

(T4) u ∗ v = au + bv, [u, v, u] = eu + fv, [u, v, v] = ku − ev
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with a �= 0, b �= 0, e �= 0, f �= 0, k �= 0, and af − be = 0 = bk + ae. Also recall

that a classification of complex 2-dimensional LY algebras is given in [21].

The algebras of type (T1) are either the zero algebra or nonzero Lie triple

systems (a classification of real 2-dimensional Lie triple systems is given in [10];

see also [3], a classification of complex 2-dimensional Lie triple systems is found

in [19]). According to Corollary 3.6 in [25], each of these Lie triple systems

with a given endomorphism gives rise to a (real 2-dimensional) Hom-Lie triple

system (i.e. a Hom-LY algebra with zero binary operation).

The algebras of type (T3) are real nonzero 2-dimensional Lie algebras (in

fact (T3) is the only one, up to isomorphism, real nonzero 2-dimensional Lie

algebra). Given any endomorphism of (T3) we get, by Theorem 3.3 of [23], its

corresponding (real 2-dimensional) Hom-Lie algebra (i.e. a Hom-LY algebra

with zero ternary operation).

Since Hom-Lie algebras as well as Hom-Lie triple systems are particular

instances of Hom-LY algebras, we shall focus on algebras of types (T2) and

(T4) in order to get nontrivial applications of Corollary 3.2.

In the LY algebra of type (T4), consider the basis change ũ = au + bv,

ṽ = v. Then some few transformations and the use of conditions a �= 0, and

af − be = 0 = bk + ae imply that (T4) is isomorphic to

(T4’) ũ ∗ ṽ = aũ, [ũ, ṽ, ũ] = 0, [ũ, ṽ, ṽ] = kũ.

One observes that the algebra (T4’) is isomorphic to the algebra (T2) by an

isomorphism θ given by θ(u) = αũ + βṽ, θ(v) = γũ + δṽ if and only if a = ±1

and α �= 0. Then the isomorphisms are

θ(u) = αũ, θ(v) = γũ + v (when a = 1)

and

θ(u) = αũ, θ(v) = γũ − v (when a = −1),

where α �= 0 and γ are real numbers.

Therefore, for a nontrivial application of Corollary 3.2, we shall consider

algebras of type (T2) and type (T4’) when a �= ±1.

In general, if (A, ∗, [, , ]) is a LY algebra, then a linear self-map φ of A is an

endomorphism of (A, ∗, [, , ]) if

{

φ(x ∗ y) = φ(x) ∗ φ(y)

φ([x, y, z]) = [φ(x), φ(y), φ(z)], (4.1)

for all x, y, z ∈ A. In order to determine φ, it suffices to apply the conditions

(4.1) to the basis elements of A. Using elementary algebra, we are led to



A twisted generalization of Lie-Yamaguti algebras 349

solve the resulting n simultaneous equations with respect to the coefficients

expressing φ in the given basis (the number n depends on the dimension of A).

These equations are not difficult to solve when dimA = 2. Suppose now that

dimA = 2 and let {u, v} be a basis of A. Then a linear self-map φ of A is given

by a 2× 2-matrix with respect to {u, v}. Set φ(u) = ǫu + βv, φ(v) = γu + δv.

⋆ Case of type (T2):

Then (4.1) induces the following simultaneous equations:

{

β = 0

ǫ(1 − δ) = 0,

{

β = 0

ǫ(1 − δ2) = 0.

Resolving these simultaneous equations, we are led to the following endomor-

phisms φ of (T2):

I.

{

φ(u) = 0

φ(v) = γu + δv,

II.

{

φ(u) = ǫu

φ(v) = γu + v,

where γ, δ, and ǫ �= 0 are any real numbers.

For each endomorphism I. and II. above, we apply Corollary 3.2 to find the

corresponding Hom-LY algebra.

-For an endomorphism of type I., Corollary 3.2 implies that the LY algebra

(T2) is twisted into the zero Hom-LY algebra by such an endomorphism.

-For an endomorphism of type II., Corollary 3.2 induces from (T2) the following

Hom-LY algebras:

u∗̃v = ǫu, {u, v, u} = 0, {u, v, v} = kǫ2u, (4.2)

where ǫ �= 0 and k �= 0 are real numbers.

Remark: A LY algebra of type (T2) admits a nonzero twisting (i.e. the

associated Hom-LY algebra is nonzero) if and only if ǫ �= 0, in which case the

twisting maps are algebra automorphisms (including the identity map) of (T2).
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⋆ Case of type (T4’) (i.e. (T4)):

In this case, (4.1) leads to the same types I. and II. of endomorphisms as

above. Therefore:

-for an endomorphism of type I., we get the zero Hom-LY algebra from (T4’)

by Corollary 3.2;

-for an endomorphism of type II., the application of Corollary 3.2 to (T4’)

gives the following Hom-LY algebras:

ũ∗̃ṽ = aǫũ, {ũ, ṽ, ũ} = 0, {ũ, ṽ, ṽ} = kǫ2ũ, (4.3)

where ǫ �= 0, a �= 0,±1 and k �= 0 are real numbers.

Remark: One observes that a Hom-LY algebra of type (4.2) is isomorphic

to the one of type (4.3) by an isomorphism θ(u) = αũ + βṽ, θ(v) = γũ + δṽ if

and only if a = ±1 and α �= 0. Then the isomorphisms are

θ(u) = αũ, θ(v) = γũ + ṽ (when a = 1)

and

θ(u) = αũ, θ(v) = γũ − ṽ (when a = −1).

Therefore the Hom-LY algebras (4.2) and (4.3) are isomorphic if and only if

the LY algebras (T2) and (T4’) are isomorphic.
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