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LIRMM, Université de Montpellier 2 et CNRS, Montpellier, France,
first.last@lirmm.fr

Abstract. In Model Driven Engineering (MDE), a Model Transforma-
tion is a specialized program, often composed of a set of rules to transform
models. The Model Transformation By Example (MTBE) approach aims
to assist the developer by learning model transformations from source
and target model examples.In a previous work, we proposed an approach
which takes as input a fragmented source model and a target model, and
produces a set of fragment pairs that presents the many-to-many match-
ing links between the two models. In this paper, we propose to mine
model transformation patterns (that can be later transformed in trans-
formation rules) from the obtained matching links. We encode our models
into labeled graphs that are then classified using the GRAAL approach
to get meaningful common subgraphs. New transformation patterns are
then found from the classification of the matching links based on their
graph ends. We evaluate the feasibility of our approach on two represen-
tative small transformation examples.

1 Introduction

MDE is a subfield of software engineering that relies on models as a central arti-
fact for the software development cycle. Models can be manually or automatically
manipulated using model transformations. A model transformation is a program,
often composed of a set of transformation rules, that takes as input a model and
produces as output another model. The models conform to meta-models, as
programs conform to the programming language grammar. If we would like to
transform any Java program into any C++ program, we would express this trans-
formation at the level of their grammars. In MDE, model transformations are
similarly expressed in terms of the meta-models. Designing a model transforma-
tion is thus a delicate issue, because the developer has to master the specialized
language in which the transformation is written, the meta-modeling activity,
and the subtleties of the source and the target meta-models. In order to as-
sist the developers, the MTBE approach follows the track of the "Programming
By Example" approach [6] and proposes to use an initial set of transformation
examples from which the model transformation is partly learnt. The first step
of the MTBE approach consists in extracting matching links, from which the
second step learns transformation rules. Several approaches [1,15,12] are pro-
posed for the second step, but they derive element-to-element (one-to-one) rules



that mainly express how a source model element is transformed into a target
model element. In this paper, we propose to learn transformation patterns of
type fragment-to-fragment (many-to-many) using the output of a previous work
[13] that consists in generating matching links between source and target model
fragments. We encode our models and model fragments as labeled graphs. These
graphs are classified through a lattice using a graph mining approach (GRAAL)
to get meaningful common subgraphs. The matching links are then classified
using Formal Concept Analysis, the lattice of source graphs and the lattice of
target graphs. New transformation patterns are discovered from these classifica-
tions that can help the designer of the model transformation. We evaluate the
feasibility of our approach on two representative transformation examples.

The next Section 2 gives an overview of our approach. Section 3 presents the
transformation pattern mining approach and Section 4 evaluates its feasibility.
Section 5 presents the related work, and we conclude in Section 6.

2 Approach Overview

In Model-Driven Engineering, model transformation are programs that trans-
form an input source model into an output target model. A classical model trans-
formation (UML2REL) transforms a UML model into a RELational model. Such
transformation programs are often written with declarative or semi-declarative
languages and composed of a set of transformation rules, defined at the meta-
model level. The meta-model defines the concepts and the relations that are used
(and instantiated) to compose the models. For example, the UML meta-model
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Fig. 1. Process overview

contains the concept of Class which owns Attributes. This can used to derive
a UML model composed of a class Person owning the attribute Name. In the
UML2REL example, a very simple transformation pattern would be: a UML class
owning an attribute is transformed into a relational table owning a column. In
this paper, our objective is to learn such transformation patterns that express
that a pattern associating entities of the source meta-model (e.g. a UML class
owning an attribute) is transformed into a pattern associating entities of the
target meta-model (e.g. a relational table owning a column). Fig. 1 provides
an overview of our process. Let us consider that we want to learn rules for
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transforming UML models to relational models. Our input data (see Fig. 2) are
composed of: fragmented source models (a UML source fragment is given in Fig.
3(a)); fragmented target models (a relational target fragment is given in Fig.
3(b)); and matching links between fragments established by experts or by an
automatic matching technique. For example a matching link (L1) is established
in Fig. 2 between the UML source fragment of Fig. 3(a) and the relational target
fragment of Fig. 3(b).
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Fig. 2. Three matching links between fragmented UML and relational models (this
figure is more readable in a coloured version)

Matching links established by experts or by automatic methods can be used
to form a set of model transformation patterns. For example, the L2 matching
link gives rise to a transformation pattern which indicates that a UML class
(with an attribute) with its super-class (with an attribute) is transformed into a
unique table with two columns, one being inherited. Nevertheless, matching links
often correspond to patterns that combine several simpler transformations or
are triggered from domain knowledge. Besides, they may contain minor errors
(such as a few additional or missing elements, for example, column date of Table
ReservationRequest has in fact no equivalent in Class ReservationRequest).
Moreover, what interests us is beyond the model domain. We do not want to
learn that Class Client is transformed into Table Client, but rather that a
UML class is usually transformed into a table.

Our output is composed of a set of model transformation patterns. Some can
directly be inferred from initial matching links (as evoked previously), and some
will be found thanks to graph generalization and matching link classification.
From our simple example, we want to extract the model transformation pattern
presented in Figure 4, whose premise and conclusion patterns do not appear as
such in the initial set of matching links (→֒ means "is transformed into").
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Fig. 3. An example of UML and relational models

→֒

Fig. 4. Transformation pattern: a class specializing a class with an attribute (in UML
model) is transformed into a table with an inherited column (in relational model).

3 Model Transformation Pattern Generation

From model fragments to graphs For our example, the source meta-model
is inspired by a tiny part of the UML metamodel (see Figure 5(a)), while the
target meta-model has its roots in a simplified relational data-base meta-model
(see Fig. 5(c)). The models often are represented in a visual syntax (as shown in
Fig. 3(a) and Fig. 3(b)) for readability reasons. Here we use their representation
as instance diagrams of their meta-model (using the UML instance diagram
syntax). For example, the UML model of Fig. 3(a) is shown as an instantiation of
its meta-model in Fig. 5(b), where each object (in a rectangular box) is described
by its meta-class in the meta-model, valued attributes and roles conforming to
the attributes and associations from the meta-model: e.g. person and client

are explicit instances of Class; client:Class has a link towards person labeled
by the role specializes; client:Property has the attribute lowerBound (1).

To extract expressive transformation patterns, we transform our models using
their instance diagram syntax, into simpler graphs which have labeled vertices.
We limited ourselves to locally injective labelled graphs. A locally injective graph
is a labeled graph such that all vertices in the neighbor of a given vertex have
different labels. This is not so restrictive in our case, because the fragments
identified by the experts rarely include similar neighborhood for an entity. Here
are the rules that we use in the transformation from simplified UML instance
diagrams to labeled graphs. We associate a labeled node to Objects, Roles, At-
tributes, Attribute values. Instance diagram of Figure 5(b) and corresponding
labeled graph from 6(a) are used to illustrate the transformation: person:Class
object is transformed into node 1 labeled class_1 and one of the attribute value
1 is transformed into node 13 labeled one_13. Edges come from the following
situations: an object has an attribute; an attribute has a value; an object has
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a role (is source of a role); an object is the target of a role. For example, for
the property which has an attribute lowerBound (equal to zero), there is a
corresponding edge (property_17, lowerBound_18).
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lowerBound
upperBound

hasType

ownsAttribute

specializes
ownedEnd {Ordered}

(a) UML metamodel
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(b) UML model of Fig 3(a) in instance dia-
gram syntax
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(c) Relational metamodel

client : Table
reservationRequest : 

Table

clientNumber: 
PKey

name : Column
clientNumber : 

FKey

inheritedProperty

date : Column

requestNumber 
: PKey

Property

hasSameName

(d) Relational model of Fig 3(b) in instance diagram
syntax

Fig. 5. Source/target metamodel and model, UML (upper par), relational (lower part)

Classification of graphs (GRAAL approach) After the previous step, we
obtain a set of source graphs, and a set of target graphs. We illustrate the re-
mainder of this section by using the three source graphs of Fig. 6, the three
target graphs of Fig. 7, and the matching links (Source graph i, Target graph i),
for i ∈ {0, 1, 2}. To get meaningful common subgraphs (on which new transfor-
mation patterns will be discovered), we use the graph mining approach proposed
in [7] and its derived GRAAL tool. In this approach, examples are described by
a description language L provided with two operations: an ≤ specialization op-
eration and an ⊗ operation which builds the least general generalization of two
descriptions. A generalization of the Norris algorithm [11] builds the Galois lat-
tice. Several description languages are implemented in GRAAL, and especially a
description based on locally injective graphs. ⊗ operation is the reduction of the
tensor product of graphs, also called the Kronecker product [14]. We indepen-
dently classify source graphs and target graphs. Classification of source graphs
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produces the lattice of Fig. 8(a). For example, in this lattice, Concept sfc012

has for intent a subgraph of source graphs 0, 1 and 2 representing a class which
specializes a class which owns an attribute. Classification of target graphs pro-
duces the lattice of Fig. 8(b). In this lattice, Concept tfc012 has for intent a
subgraph where a table has an inherited property.

(a) Source graph 1

(b) Source graph 0 (c) Source graph 2

Fig. 6. Source graphs

Classification of transformation links In the previous section, we have
shown how Galois lattices can be computed on the labeled graphs that represent
our model fragments. Now a matching link is described by a pair composed of
a source fragment (whose corresponding graph is in the extent of some concepts
in the source graph lattice) and a target fragment (whose corresponding graph
is in the extent of some concepts in the source graph lattice). This is described
in a formal context, where objects are the matching links and attributes are
the concepts of the two lattices (source graph lattice and target graph lattice).
In this formal context (presented in Table 11(a)), a matching link is associated
with the concepts having respectively its source graph and its target graph in
their extent. This means that the matching link is described by the graph of its
source fragment and by the generalizations of this graph in the lattice. This is
the same for the graphs of the target fragments. For example, matching link L0,
connecting source fragment 0 to target fragment 0, is associated in the formal
context to concepts sfc01, sfc012, tfc01, tfc012.
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(a) Target graph 1

(b) Target graph 0 (c) Target graph 2

Fig. 7. Target graphs

(a) Source graph lattice (b) Target graph lattice

Fig. 8. Graph lattices. Only concept extents are represented in the figure. Intents of
concepts are shown in Fig. 9 and 10. We denote by sfcx1...xn (resp. tfcx1...xn)

the vertex [x1,...,xn] of the source (resp. target) graph lattice.

The concept lattice associated with the matching link formal context of Fig.
11(a) is shown in Fig. 11(b). In this representation (obtained with RCAexplore1)
each box describes a concept: the first compartment informs about the name of
the concept, the second shows the simplified intent (here concepts from source
fragment lattice and target fragment lattice) and the third one shows the sim-
plified extent (here matching links). Concept_MatchingLinksFca_4 extent is
composed of the links L0 and L1, while the intent is composed of source graph
concepts sfc01, sfc012 and target graph concepts tfc01, tfc012.

Model transformation pattern mining The last step of the process consists
in extracting model transformation patterns from the matching link lattice. This
has close connections to the problem of extracting implication rules in a concept
lattice, but using only pairs of source and target graph concepts. The more

1 http://dolques.free.fr/rcaexplore.php
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(a) Concept sfc2 (b) Concept sfc01 (c) Concept
sfc012

Fig. 9. Source graph lattice concepts. Concept sfc1 (not represented) has Source
Graph 1 of Fig. 6 as intent

(a) Concept
tfc012

(b) Concept tfc12 (c) Concept tfc01

Fig. 10. Target graph lattice concepts. Concepts tfc1 and tfc2 (not represented) have
resp. Target Graph 1 and Target Graph 2 from Fig. 7 as their intents.

reliable transformation patterns are given when using a source graph and a
target graph in the same simplified intent of a concept, because this corresponds
to the fact that the source graph is always present when the target graph is
present too (and reversely). For example, from Concept_MatchingLinksFca_0,
we obtain the following transformation pattern:

graph of sfc012 intent →֒ graph of tfc012 intent

This pattern expresses a new transformation pattern (new in the sense that it
does not directly come from a matching link):

A UML model where a class Cd specializes another class Cm which owns
an attribute a is transformed into a relational model where a table T

owns a (inherited) column c.

Due to the simplicity of our illustrative example, the other reliable patterns
obtained from source and target graphs from the same simplified intent just
correspond to matching links.

Obtaining other, less reliable patterns, relies on the fact that if a source
graph and a target graph are not in the same simplified intent, but the concept
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Fig. 11. Matching link formal context and corresponding concept lattice.

Cs which introduces the source graph is below the concept Ct which introduces
the target graph, then we infer the following transformation pattern:

part of graph of Cs intent →֒ graph of Ct intent

For example, as sfc1 appears below tfc12, we can deduce that, when the in-
put of the transformation contains the graph of intent ofsfc1, thus the output
contains the graph of intent of tfc12. These patterns are less reliable, because
the source graph may contain many things that have nothing to do with the tar-
get graph (compare sfc1 and tfc12 to see this phenomenon). However, experts
can have a look on these patterns to find several (concurrent) transformation
patterns when several source model fragments are transformed into a same tar-
get model fragment. We have a symmetric situation when a source graph and
a target graph are not in the same simplified intent, but the concept Ct which
introduces the target graph is below the concept Cs which introduces the source
graph.

4 Feasibility study

We evaluated the feasibility of the approach on two different realistic transforma-
tion examples: (1) UML class diagram to relational schema model that contains
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108 model elements, 10 fragments (5 sources, 5 targets) and 5 matching links
(U2S) and (2) UML class diagram to entity relationship model that contains 66
model elements, 6 fragments (3 sources, 3 targets) and 3 matching links (U2E).
We compute from the obtained graphs for each transformation example several
pattern categories (see left-hand side of Table 1).

(1) The transformation patterns coming from simplified intents (which we
think are the most relevant patterns): they correspond to graphs pairs (GS , GT )
such that GS and GT are in the simplified intent of a same concept. They can
be divided into two sets. The set TPl groups the patterns that are inferred from
the initial matching links (GS , GT are the ends of a matching link). The set TPn

contains the patterns that are learned from graph generalization and matching
link classification.

(2) The transformation patterns (TPnparts
) coming from the graphs GS and

GT , such that GS is in simplified intent of a concept Cs which is a subconcept
of the concept Ct which has GT in its simplified intent and all concepts greater
than Cs and lower than Ct have an empty simplified intent. In addition, we
consider only the case where simplified intent of Cs contains only source graphs
or (inclusively) simplified intent of Ct contains only target graphs.

(3) Symmetrically, the transformation patterns (TPnpartt
) coming from the

graphs GS and GT , such that GT is in simplified intent of a concept Ct which
is a subconcept of the concept Cs which has GS in its simplified intent and all
concepts greater than Ct and lower than Cs have an empty simplified intent. In
addition, we consider only the case where simplified intent of Cs contains only
source graphs or (inclusively) simplified intent of Ct contains only target graphs.

Table 1. Results. Left-hand side: sets cardinals. Right-hand side: precision metrics

#TPl #TPn #TPnparts
#TPnpartt

Ill. ex. 2 2 2 1

U2S 1 5 3 0

U2E 2 2 1 1

PTPl
PTPn PTPnparts

PTPnpartt

Ill. ex. 1 1 0.72 0.72

U2S 1 0.75 0.78 -

U2E 1 1 0.73 0.95

We also evaluate each extracted transformation pattern using a precision
metric. Precision here is the number of elements in the source and target graphs
that participate correctly to the transformation (according to a human expert)
divided by the number of elements in the graphs. We then associate a precision
measure to a set of transformation patterns, which is the average of the precisions
of its elements (See right-hand side of Table 1).

The results show that we learn transformation patterns that correspond to
the initial mapping links. These patterns are relevant and efficient (precision =
1). 17 new transformation patterns are also learned from the three used examples.
These patterns seems also relevant, with a precision average than 0.83.
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5 Related Work

Several approaches have been proposed to mine model transformation. The
MTBE approach consists in learning model transformation from examples. An
example is composed of a source model, the corresponding transformed model,
and matching links between the two models. In [1,15], an alignment between
source and target models is manually created to derive transformation rules.
The approach of [5] consists in using the analogy to search for each source
model its corresponding target model without generating rules. In a previous
work [12], we use Relational Concept Analysis (RCA) to derive commonalities
between the source and target meta-models, models and transformation links to
learn executable transformation rules. The approach based on RCA builds trans-
formation patterns that indicate how a model element, in a specific context, is
transformed into a target element with its own specific context. This approach
has many advantages for the case when the matching link type is one-to-one,
but it is not able to capture the cases where a set of model elements is globally
transformed into another set of model elements (matching link type is many-to-
many). In this paper, we investigate graph mining approaches, to go beyond the
limitations of our previous work. In the current context of MDE, transformation
examples are not very large (they are manually designed), thus we do not expect
scalability problems. Compared with a solution where we would build a lattice
on graphs containing elements from both source and target models coming from
matching links, the solution we choose separately classifies source graphs and
target graphs. This is because source graphs and target graphs could come from
the same meta-model (or from meta-models with common concepts) and it has
no meaning in our context to generalize a source graph and a target graph to-
gether. We also think that the result is more readable, even in the case of disjoint
meta-models.

Our problem has close connections with the pattern structure approach [4]
when the pattern structure is given by sets of graphs that have labeled vertices.
Graph mining approaches [2,10] aim at extracting repeated subgraphs in a set of
graphs. They use a partial order on graphs which usually relies on morphism or
on injective morphism, also known as subgraph isomorphism [9]. In the general
case, these two morphism operations have an exponential complexity. In this
paper, we rely on graph mining to classify independently the origins and the
destinations of matching links and to infer from this, a classification of matching
links, that is then used to extract transformation patterns.

6 Conclusion

We have proposed an approach to assist a designer in her/his task of writing a
declarative model transformation. The approach relies on model transformation
examples composed of source and target model fragments and matching links.
Models and their fragments are represented by graphs with labelled vertices that
are classified. This classification is in turn, used for classifying the matching links.
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Finally, the mined model transformation patterns express how a source model
fragment is transformed into a target model fragment. Future directions of this
work include extending the evaluation to other kinds of source and target meta-
models, and define a notion of support for the patterns. We also would like
to explore the different kinds of graph mining approaches, in particular to go
beyond the limitation of using locally injective graphs. Finally, we plan to apply
our approach [12] to transform the obtained patterns into operational rules.
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