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Query Failure Explanation in Inconsistent Knowledge Bases Using Argumentation

We address the problem of explaining Boolean Conjunctive Query (BCQ) failure in the presence of inconsistency within the Ontology-Based Data Access (OBDA) setting, where inconsistency is handled by the intersection of closed repairs semantics (ICR) and the ontology is represented by Datalog+/-rules. Our proposal relies on an interactive and argumentative approach where the processes of explanation takes the form of a dialogue between the User and the Reasoner. We exploit the equivalence between argumentation and ICR-semantics to prove that the Reasoner can always provide an answer for user's questions.

Introduction

In the popular ONTOLOGY-BASED DATA ACCESS setting the domain knowledge is represented by an ontology facilitating query answering over existing data [START_REF] Poggi | Linking data to ontologies[END_REF]. In practical systems involving large amounts of data and multiple data sources, data inconsistency with respect to the ontology is unavoidable. Many inconsistency-tolerant semantics [START_REF] Bienvenu | Tractable approximations of consistent query answering for robust ontologybased data access[END_REF][START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF][START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF][START_REF] Lukasiewicz | Complexity of inconsistency-tolerant query answering in datalog+[END_REF] have been proposed that rely on the notion of data repairs i.e. subsets of maximally consistent data with respect to the ontology. Query answering under these semantics may not be intuitively straightforward and can lead to loss of user's trust, satisfaction and may affect the system's usability [START_REF] Mcguinness | Usability issues in knowledge representation systems[END_REF]. As argued by Calvanese et al. [START_REF] Calvanese | Reasoning about explanations for negative query answers in dl-lite[END_REF] explanation facilities should not just account for user's "Why Q ?" question (why a query holds under a given inconsistency-tolerant semantics) but also for question like "Why not Q ?" (why a query does not hold under a given inconsistency-tolerant semantics).

The research problem addressed by this paper is the boolean conjunctive query failure explanation in inconsistent knowledge bases, precisely: "Given an inconsistent KB and a boolean conjunctive query Q, why Q is not entailed from KB under the ICRsemantics?". We use argumentation as an approach for explanation. We consider the logical instantiation of Dung's [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] abstract argumentation framework for OBDA in [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF] and we exploit the equivalence result shown by the authors between the ICR-semantics and sceptical acceptance under preferred semantics to guarantee the existence of an explanation for any failed query. The explanation takes the form of a dialogue between the User and the Reasoner with the purpose of explaining the query failure. At each level of the dialogue, we use language-based introduced primitives such as clarification and deepening to further refine the answer. The added value of our contribution lies in its significance and originality. We are the first to propose query failure explanation in the context of OBDA for inconsistent knowledge bases by means of argumentation. Our approach differs from [START_REF] Borgida | Explanation in the dl-lite family of description logics[END_REF][START_REF] Calvanese | Reasoning about explanations for negative query answers in dl-lite[END_REF] in handling query failure since we consider an inconsistent setting within OBDA. In addition, the work presented in [START_REF] Garcia | Formalizing dialectical explanation support for argument-based reasoning in knowledge-based systems[END_REF] is neither applied to an OBDA context nor to the Datalog+/-language.

Background and Overview

In this section, we introduce the motivation and the context of our work and a formal definition of the addressed problem. Consider a knowledge base about university staff and students which contains inconsistent knowledge. This inconsistency is handled by ICR-semantics. The User might be interested in knowing why the knowledge base does not entail the query Q:"Luca is a student". Observe that the individual δ (e.g. Luca in the example above) is a negative answer for a conjunctive query Q (e.g. get me all the students in the example above) if and only if the boolean conjunctive query Q(δ ) (e.g. student(Luca) in the example above) has failed. Hence, in this paper we concentrate only explaining the failure of a boolean conjunctive query. Let us formally introduce the problem of Query Failure Explanation in inconsistent knowledge bases.

Definition 1 (Query Failure Explanation Problem P) Let K be an inconsistent knowledge base, Q a Boolean Conjunctive Query such that K ICR Q. We then call P = K , Q a Query Failure Explanation Problem (QFEP).

To address the Query Failure Explanation Problem, we use a logical instantiation of Dung's [START_REF] Dung | On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games[END_REF] abstract argumentation framework for OBDA in [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF] ensuring that the argumentation framework used respects the rationality postulates [START_REF] Caminada | On the evaluation of argumentation formalisms[END_REF].

Let us first introduce the OBDA setting and inconsistency-tolerant semantics. We consider the positive existential conjunctive fragment of first-order logic, denoted by FOL(∧,∃), which is composed of formulas built with the connectors (∧, →) and the quantifiers (∃, ∀). For more details about the language please check [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF]. In this paper, for lack of space we simply give an example of a knowledge base K = (F , R, N ) is composed of finite set of facts F and finite set of existential rules R and a finite set of negative constrains N .

Example 1 Let us consider an example inspired from [START_REF] Calì | A general datalog-based framework for tractable query answering over ontologies[END_REF]. In an enterprise, employees work in departments and use offices which are located in departments, some employees direct departments, and supervise other employees. In addition, a supervised employee cannot be a manager. A director of a given department cannot be supervised by an employee of the same department, and two employees cannot direct the same department , and an employee cannot work in more than one department. The following sets of (existential) rules R and negative constraints N model the corresponding ontology:

R =          ∀x∀y (works_in(x, y) → emp(x)) (r 1 ) ∀x∀y (directs(x, y) → emp(x)) (r 2 ) ∀x∀y (directs(x, y) ∧ works_in(x, y) → manager(x)) (r 3 ) ∀x∀y∀z locate_office(y, z) ∧ uses_office(x, y) → works_in(x, z) (r 4 ) N =      ∀x∀y (supervises(x, y) ∧ manager(y)) → ⊥
(n 1 ) ∀x∀y∀z (supervises(x, y) ∧ works_in(x, z) ∧ directs(y, z)) → ⊥ (n 2 ) ∀x∀y∀z (works_in(x, y) ∧ works_in(x, z)) → ⊥ (n 3 ) Let us suppose the following set of facts F that represent explicit knowledge:

F =                directs(John, d 1 ) ( f 1 ) directs(Tom, d 1 ) ( f 2 ) directs(Tom, d 2 ) ( f 3 ) supervises(Tom, John) ( f 4 ) works_in(John, d 1 ) ( f 5 ) works_in(Tom, d 1 ) ( f 6 ) works_in(Carlo, Statistics) ( f 7 ) works_in(Luca, Statistics) ( f 8 ) works_in(Jane, Statistics) ( f 9 ) works_in(Linda, Statistics) ( f 10 ) uses_office(Linda, o 1 ) ( f 11 ) locate_office(o 1 , Accounting) ( f 12 )
Let F ⊆ F be a set facts and R be a set of rules. An R-derivation of F in K is a finite sequence F 0 , ..., F n of sets of facts s.t F 0 = F, and for all i ∈ {0, ..., n} there is a rule r i = (H i ,C i ) ∈ R and a logical entailment from the H i to F i . For a set of facts F ⊆ F and a query Q and a set of rules R, we say F, R |= Q iff there exists an R-derivation F 0 , ..., F n such that F n |= Q. Given a set of facts F ⊆ F and a set of rules R, the closure of F with respect to R, denoted by Cl R (F) is the minimal set of all the knowledge that can be derived from a set of facts F by applying all the rules of R. Finally, we say that a set of facts F ⊆ F and a set of rules R entail a fact f (and we write F, R |= f ) iff the closure of F by all the rules entails f (i.e. Cl R (F) |= f ).

Given a knowledge base K = (F , R, N ), a set F ⊆ F is said to be inconsistent iff there exists a constraint n ∈ N such that F |= H n , where H n is the hypothesis of the constraint n. A set of facts is consistent iff it is not inconsistent. Notice that (like in classical logic) one can entail everything from an inconsistent set. A common solution [START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF][START_REF] Lembo | Inconsistency-tolerant semantics for description logics[END_REF] is to construct maximal (with respect to set inclusion) consistent subsets of K . Such subsets are called repairs and denoted by Repair(K ). Once the repairs are computed, different semantics can be used for query answering over the knowledge base. In this paper we focus on (Intersection of Closed Repairs semantics) [START_REF] Bienvenu | On the complexity of consistent query answering in the presence of simple ontologies[END_REF] and we will denote ICR entailment as K |= ICR Q.

Example 2

The knowledge base in Example 1 is inconsistent because the set of facts { f 1 , f 4 , f 6 } ⊆ F is inconsistent since it violates the negative constraint n 2 . To be able to reason in presence of inconsistency one has to construct first the repairs and intersect their closure. The following is of the repairs: A 1 = {directs(John, d 1 ), supervises(Tom, John), works_in(Linda, Statistic), uses_office(Linda, o 1 ), directs(Tom, d 1 ), directs(Tom, d 2 ), works_in(Carlo, Statistic), works_in(Jane, Statistic), works_in(Luca, Statistic), emp(John), emp(Tom), emp(Carlo), emp(Luca), emp(Jane), emp(Linda)}. The intersection of all closed repairs is:

A∈Repair(K )) Cl R (A) = {directs(Tom, d 1 ), directs(Tom, d 2 )
, works_in(Carlo, Statistics), works_in(Luca, Statistics), works_in(Jane, Statistics), emp(Carlo), emp(Jane), emp(Luca), emp(Tom), emp(John), emp(Linda)}.

Observe that in the intersection of all closed repairs there is works_in(Luca, Statistics). That means that works_in(Luca, Statistics) is ICR-entailed from the knowledge base. Whereas, works_in(Linda, Statistics) is not ICR-entailed since the facts about Linda are conflicting (because she works also for the department of Accounting).

Argumentation Framework, Deepening and Clarification

In what follows we quickly recall the definition of argumentation framework in the context of rule-based languages. We use the definition of argument of [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF] and extend it to the notions of deepened and clarified arguments. Given a knowledge base K = (F , R, N ), the corresponding argumentation framework A F K is a pair (Arg, Att) where Arg is the set of arguments that can be constructed from F and Att is an asymmetric binary relation called attack defined over Arg × Arg. Given an argument a we denote by Supp(a) the support of the argument and by Conc(a) the conclusion. The results of [START_REF] Croitoru | What can argumentation do for inconsistent ontology query answering[END_REF] show the equivalence between sceptically acceptance under preferred semantics and ICR-entailment. Let us now propose functionalities that give the User the possibility to manipulate arguments to gain clarity for query answering and namely: deepening and clarification. Deepening aims at showing the reason why an argument attacks another. In our knowledge base the attack is justified by the violation of a constraint. Put differently, an argument attacks another argument if the conclusion of the former and the hypothesis of the latter are mutually exclusive. Thus deepening amounts to explain the attack between two arguments by showing the violated constraint. The information carried by the argument would be more useful if the structure exhibits the line of reasoning leading to the conclusion, called clarifying the argument. Definition 3 (Clarifying C) Given an argument a ∈ A . The mapping clarification denoted by C is a total function from the set A to 2 R such that: C(a = F 0 , ..., F n ) = {r|r ∈ R s.t r is applicable to F i and the application of r on F i yields F i+1 for all i ∈ {0, ..., n}}. 

Dialectical Explanation for Query Failure

In what follows, we describe a simple dialectical system of explanation based on the work of [START_REF] Walton | A Dialogue System Specification for Explanation[END_REF]. Our system is custom-tailored for the problem of Query Failure Explanation under ICR-semantics in inconsistent knowledge bases with rule-based language. Our dialectical explanation involves two parties: the User and the Reasoner. The User wants to understand why the query is not ICR-entailed and the Reasoner provides a respond aiming at showing the reason why the query is not ICR entailed. We model this explanation through a dialogue composed of moves (speech acts) put forward by both the User and the Reasoner. This dialogue is governed by rules (pre/post conditions rules, termination rules, success rules) that specify what type of moves should follow the other, the conditions under which the dialogue terminates, and when and under which conditions the explanation has been successfully achieved (success rules).

We denote by Arg + (Q) the set of all arguments that support the query Q, namely

a ∈ Arg + (Q) iff Conc(a) |= Q.
In what follows we define types of moves that can be used in the dialogue.

Definition 5 (Moves)

A move is a 3-tuple m = ID, I, ω such that:

1. m is an explanation request, denoted by m ERQ iff ID = User, I is a query Q and ω is an argument supporting Q. 2. m is an explanation response, denoted by m ERP iff ID = Reasoner, I is an argument supporting Q and ω is an argument such that ω attacks I. 3. m is a follow-up question, denoted by m FQ iff ID = User, I is an argument and ω is either Conc(I) or an argument ω 1 that supports Q s.t (ω, ω 1 ) ∈ Att. 4. m is a follow-up answer, denoted by m FA iff ID = Reasoner, I is an argument and ω is either a deepening D or a clarified argument C(I).

The explanation request m ERQ = User, Q, ω is an explanation request made by the User asking "why the query Q is not ICR-entailed while there is an argument ω asserts the entailment of Q", an explanation response m ERP = Reasoner, ω, ω 1 made by the Reasoner is an explanation for the previous inquiry by showing that the argument ω (that supports Q) is the subject of an attack made by ω 1 . The User also can ask a follow-up question if the Reasoner provides an explanation. The follow-up question m FQ = User, ω 1 , ω is a compound move, it can represent a need for deepening (the User wants to know why the argument ω 1 is attacking the argument ω) or the need for clarification (how the argument ω 1 comes to a certain conclusion). To distinguish them, the former has ω = Conc(ω 1 ) and the latter has ω as an argument. A follow-up answer m FA = Reasoner, ω 1 , ω 1 is also a compound move. Actually, it depends on the followup question. It shows the argument ω 1 that needs to be deepened (resp. clarified) and its deepening (resp. clarification) by the deepening mapping D(ω 1 , ω) (resp. clarification mapping C(ω)) in Definition 4 (resp. Definition 6). An example is provided afterward.

In what follows we specify the structure of dialectical explanation and the rules that have to be respected throughout the dialogue. Definition 6 (Dialectical Explanation) Given a QFEP P. A dialectical explanation D exp for P is a non-empty sequence of moves m s 1 , m s 2 , ..., m s n where s ∈ {ERQ, FQ, ERP, FA} and i ∈ {1, ..., n} such that:

1. The first move is always an explanation request m ERQ 1 , we call it an opening. 2. s ∈ {ERQ, FQ} iff i is odd, s ∈ {ERP, FA} iff i is even. 3. For every explanation request m ERQ i = User, I i , ω i , I i is the query Q to be explained and ω i is an argument supporting Q and for all m ERQ j s.t j < i ω i = ω j . 4. For every explanation response m ERP i = Reasoner, I i , ω i s.t i ≥ 1, I i = ω i-1 and ω i = ω s.t (ω , I i ) ∈ Att. 5. For every follow-up question m FQ i = User, I i , ω i , i 1, I i = ω i-1 and ω is either I i-1 or Conc(ω i-1 ). 6. For every follow-up answer m FA i = Reasoner, I i , ω i , i 1,

I i = I i-1 and ω i = D(I i , ω i-1 ) or ω = C(I i ).
We denote by Arg user (D exp ) the set of all arguments put by the User in the dialogue.

Every dialogue has to respect certain rules (protocol). Theses rules organize the way the Reasoner and the User should put the moves. For each move we specify the conditions that have to be me for the move to be valid (preconditions). We also specify the conditions that identify the next moves (postconditions).

Definition 7 (Pre/Post Condition Rules) Given a QFEP P and a dialectical explanation D exp for P. Then, D exp has to respect the following rules:

Explanation request:

• Preconditions: The beginning of the dialogue or the last move of the Reasoner was either an explanation response or a follow-up answer. • Postconditions: The next move must be an explanation answer.

Explanation response:

• Preconditions: The last move by the User was an explanation request.

• Postconditions: The next move must be either another explanation request (it may implicitly means that the User had not understood the previous explanation) or a follow-up question.

Follow-up question:

• Preconditions: The last move by the Reasoner was an explanation response or this follow-up question is not the second in a row. • Postconditions: The next move must be a follow-up answer.

Follow-up answer:

• Preconditions: The last move by the User was a follow-up question.

• Postconditions: The next move must be an explanation request (it may implicitly means that the User had not understood the previous explanation).

Beside the previous rules, there are termination rules that indicate the end of a dialectical explanation.

Definition 8 (Termination Rules) Given a QFEP P and a dialectical explanation D exp for P. Then, D exp terminates when the User puts an empty explanation request m ERQ i = User, / 0, / 0 or when Arg User (D exp ) = Arg + (Q).

The rules in Definition 7 & 8 state that the Reasoner is always committed to respond with an explanation response, the User then may indicate the end of the dialogue by an empty explanation request (Definition 8) declaring his/her understanding, otherwise starts another explanation request (this indicates that he/she has not understood the last explanation) or asks a follow-up question, the User cannot ask more than two successive follow-up questions. If the User asks a follow-up question then the Reasoner is committed to a follow-up answer. When the User asks for another explanation he/she cannot use an argument that has already been used. If the User ran out of arguments and he/she has not yet understood, the dialogue ends (Definition 8) and the explanation is judged unsuccessful. It is important to notice that when the Reasoner wants to answer the User there may be more than one argument to chose. There are many "selection strategies" that can be used in such case (for instance, the shortest argument, the least attacked argument...etc), but their study is beyond the scope of the paper.

In what follows we elaborate more on the success and the failure of an explanation.

Definition 9 (Success Rules) Given a QFEP P and a dialectical explanation D exp for P. Then, D exp is successful when it terminates with an empty explanation request m ERQ i = User, / 0, / 0 , otherwise it is unsuccessful.

A dialectical explanation is judged to be successful if the User terminates the dialogue voluntarily by putting an empty explanation request. If the User has used all arguments supporting Q then he/she is forced to stop without indicating his/her understanding, in this case we consider the explanation unsuccessful. By virtue of the equivalence between ICR-semantics and argumentation presented in Section 3, the existence of response is always guaranteed. This property is depicted in the following proposition.

Proposition 1 (Existence of response) Given a QFEP P and a dialectical explanation D exp for P. Then, For every m s i ∈ D exp s.t s ∈ {ERQ, FQ} and 1 ≤ i ≤ |D exp |, the next move m s i+1 s.t s ∈ {ERP, FA} always exists.

Conclusion

In this paper, we have presented a dialectical approach for explaining boolean conjunctive queries failure, designated by Query Failure Explanation Problem (QFEP), in an inconsistent ontological knowledge base where inconsistency is handled by inconsistencytolerant semantics (ICR) and issued from the set of facts. The introduced approach relies on both (i) the relation between ontological knowledge base and logical argumentation framework and (ii) the notions of argument deepening and clarifications. So, through a dialogue, the proposed approach explains to the User how and why his/her query is not entailed under ICR semantics.

Example 3 (

 3 Argument) The following argument indicates that John is an employee because he directs department d 1 : a = ({directs(John, d 1 )}, {directs(John, d 1 ), emp(John)}, emp(John)). Example 4 (Attack) Consider the argument a of Example 3, the following argument b = ({supervises(Tom, John), works_in(Tom, d 1 )}, supervises(Tom, John)∧ works_in(Tom, d 1 )) attacks a, because {supervises(Tom, John) ∧ works_in(Tom, d 1 ), directs(John, d 1 )} is R-inconsistent since it violates the constraint n 2 .

Definition 2 (

 2 Deepening D) Given two arguments a, b ∈ A . The mapping deepening denoted by D is a total function from the set Att to 2 N defined as follows: D(b, a) = {n| 1. n ∈ N and , 2. ∃ f ∈ Supp(a) such that Cl R ({Conc(b), f }) |= H n . } Note that H n is the hypothesis of the constraint n. Example 5 (Deepening) Consider the argument a of Example 3, the argument b = ({supervises(Tom, John) , works_in(Tom, d 1 )}, supervises(Tom, John)∧ works_in(Tom, d 1 )) attacks a, hence deepening is D(b, a) = {∀x∀y∀z (supervises(x, y) ∧ work_in(x, z) ∧ directs(y, z)) → ⊥}. This explains why the argument b attacks a.

Definition 4 (

 4 Clarified Argument) Given an argument a ∈ A . The corresponding clarified argument C a is a 3-tuple Supp(a), C(a), Conc(a) such that C(a) ⊆ R are the rules used to derive the conclusion Conc(a).

Example 6 (

 6 Clarification count. Example 3) A clarified version of the argument a is C a =({diretcs(John, d 1 )}, {∀x∀d directs(x, d) → emp(x)}, emp(John))} such that Supp(C a ) = {directs(John, d 1 )}, C(C a ) = {∀x∀d directs(x, d) → emp(x)} and Conc(C a ) = emp(John).

We currently investigate the explanation problem not only for Query Failure but also for Query Answering. We have proposed a Query Explanation framework under the CoGui editor [1] and plan to test the two approaches within the DUR-DUR ANR project which investigates the use of argumentation in agri-food chains.

Acknowledgement Financial support from the French National Research Agency (ANR) for the project DUR-DUR and ASPIQ (ANR-12-BS02-0003) is gratefully acknowledged.