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Abstract.
We address the problem of explaining Boolean Conjunctive Query (BCQ) failure

in the presence of inconsistency within the Ontology-Based Data Access (OBDA)
setting, where inconsistency is handled by the intersection of closed repairs seman-
tics (ICR) and the ontology is represented by Datalog+/- rules. Our proposal relies
on an interactive and argumentative approach where the processes of explanation
takes the form of a dialogue between the User and the Reasoner. We exploit the
equivalence between argumentation and ICR-semantics to prove that the Reasoner
can always provide an answer for user’s questions.

1. Introduction

In the popular ONTOLOGY-BASED DATA ACCESS setting the domain knowledge is rep-
resented by an ontology facilitating query answering over existing data [15]. In practi-
cal systems involving large amounts of data and multiple data sources, data inconsis-
tency with respect to the ontology is unavoidable. Many inconsistency-tolerant seman-
tics [3,2,12,13] have been proposed that rely on the notion of data repairs i.e. subsets
of maximally consistent data with respect to the ontology. Query answering under these
semantics may not be intuitively straightforward and can lead to loss of user’s trust, sat-
isfaction and may affect the system’s usability [14]. As argued by Calvanese et al.[6] ex-
planation facilities should not just account for user’s “Why Q ?” question (why a query
holds under a given inconsistency-tolerant semantics) but also for question like “Why
not Q ?” (why a query does not hold under a given inconsistency-tolerant semantics).

The research problem addressed by this paper is the boolean conjunctive query fail-
ure explanation in inconsistent knowledge bases, precisely: “Given an inconsistent KB
and a boolean conjunctive query Q, why Q is not entailed from KB under the ICR-
semantics?”. We use argumentation as an approach for explanation. We consider the log-
ical instantiation of Dung’s [10] abstract argumentation framework for OBDA in [8] and
we exploit the equivalence result shown by the authors between the ICR-semantics and
sceptical acceptance under preferred semantics to guarantee the existence of an expla-
nation for any failed query. The explanation takes the form of a dialogue between the
User and the Reasoner with the purpose of explaining the query failure. At each level
of the dialogue, we use language-based introduced primitives such as clarification and



deepening to further refine the answer. The added value of our contribution lies in its
significance and originality. We are the first to propose query failure explanation in the
context of OBDA for inconsistent knowledge bases by means of argumentation. Our
approach differs from [4,6] in handling query failure since we consider an inconsistent
setting within OBDA. In addition, the work presented in [11] is neither applied to an
OBDA context nor to the Datalog+/- language.

2. Background and Overview

In this section, we introduce the motivation and the context of our work and a formal
definition of the addressed problem. Consider a knowledge base about university staff
and students which contains inconsistent knowledge. This inconsistency is handled by
ICR-semantics. The User might be interested in knowing why the knowledge base does
not entail the query Q:“Luca is a student”. Observe that the individual δ (e.g. Luca in
the example above) is a negative answer for a conjunctive query Q (e.g. get me all the
students in the example above) if and only if the boolean conjunctive query Q(δ ) (e.g.
student(Luca) in the example above) has failed. Hence, in this paper we concentrate
only explaining the failure of a boolean conjunctive query. Let us formally introduce the
problem of Query Failure Explanation in inconsistent knowledge bases.

Definition 1 (Query Failure Explanation Problem P) Let K be an inconsistent knowl-
edge base, Q a Boolean Conjunctive Query such that K 2ICR Q. We then call P =
〈K ,Q〉 a Query Failure Explanation Problem (QFEP).

To address the Query Failure Explanation Problem, we use a logical instantiation
of Dung’s [10] abstract argumentation framework for OBDA in [8] ensuring that the
argumentation framework used respects the rationality postulates [7].

Let us first introduce the OBDA setting and inconsistency-tolerant semantics. We
consider the positive existential conjunctive fragment of first-order logic, denoted by
FOL(∧,∃), which is composed of formulas built with the connectors (∧,→) and the
quantifiers (∃,∀). For more details about the language please check [8]. In this paper,
for lack of space we simply give an example of a knowledge base K = (F ,R,N ) is
composed of finite set of facts F and finite set of existential rules R and a finite set of
negative constrains N .

Example 1 Let us consider an example inspired from [5]. In an enterprise, employees
work in departments and use offices which are located in departments, some employees
direct departments, and supervise other employees. In addition, a supervised employee
cannot be a manager. A director of a given department cannot be supervised by an em-
ployee of the same department, and two employees cannot direct the same department ,
and an employee cannot work in more than one department. The following sets of (exis-
tential) rules R and negative constraints N model the corresponding ontology:

R =


∀x∀y(works_in(x,y)→ emp(x)) (r1)

∀x∀y(directs(x,y)→ emp(x)) (r2)

∀x∀y(directs(x,y)∧works_in(x,y)→ manager(x)) (r3)

∀x∀y∀z locate_office(y,z)∧uses_office(x,y)→ works_in(x,z) (r4)



N =


∀x∀y(supervises(x,y)∧manager(y))→⊥ (n1)

∀x∀y∀z(supervises(x,y)∧works_in(x,z)∧directs(y,z))→⊥ (n2)

∀x∀y∀z(works_in(x,y)∧works_in(x,z))→⊥ (n3)
Let us suppose the following set of facts F that represent explicit knowledge:

F =



directs(John,d1) ( f1) directs(Tom,d1) ( f2)
directs(Tom,d2) ( f3) supervises(Tom,John) ( f4)

works_in(John,d1) ( f5) works_in(Tom,d1) ( f6)
works_in(Carlo,Statistics) ( f7) works_in(Luca,Statistics) ( f8)
works_in(Jane,Statistics) ( f9) works_in(Linda,Statistics) ( f10)

uses_office(Linda,o1) ( f11) locate_office(o1,Accounting) ( f12)

Let F ⊆F be a set of facts and R be a set of rules. An R-derivation of F in K is
a finite sequence 〈F0, ...,Fn〉 of sets of facts s.t F0 = F , and for all i ∈ {0, ...,n} there is a
rule ri = (Hi,Ci)∈R and a logical entailment from the Hi to Fi. For a set of facts F ⊆F
and a query Q and a set of rules R, we say F,R |= Q iff there exists an R-derivation
〈F0, ...,Fn〉 such that Fn |= Q. Given a set of facts F ⊆F and a set of rules R, the closure
of F with respect to R, denoted by ClR(F) is the minimal set of all the knowledge that
can be derived from a set of facts F by applying all the rules of R. Finally, we say that
a set of facts F ⊆F and a set of rules R entail a fact f (and we write F,R |= f ) iff the
closure of F by all the rules entails f (i.e. ClR(F) |= f ).

Given a knowledge base K = (F ,R,N ), a set F ⊆F is said to be inconsistent
iff there exists a constraint n ∈ N such that F |= Hn, where Hn is the hypothesis of
the constraint n. A set of facts is consistent iff it is not inconsistent. Notice that (like in
classical logic) one can entail everything from an inconsistent set. A common solution [2,
12] is to construct maximal (with respect to set inclusion) consistent subsets of K . Such
subsets are called repairs and denoted by Repair(K ). Once the repairs are computed,
different semantics can be used for query answering over the knowledge base. In this
paper we focus on (Intersection of Closed Repairs semantics) [2] and we will denote
ICR entailment as K |=ICR Q.

Example 2 The knowledge base in Example 1 is inconsistent because the set of facts
{ f1, f4, f6} ⊆F is inconsistent since it violates the negative constraint n2. To be able to
reason in presence of inconsistency one has to construct first the repairs and intersect
their closure. The following is of the repairs:
A1 = {directs(John,d1), supervises(Tom,John), works_in(Linda,Statistic),
uses_office(Linda,o1), directs(Tom,d1), directs(Tom,d2), works_in(Carlo,Statistic),
works_in(Jane,Statistic), works_in(Luca,Statistic), emp(John), emp(Tom), emp(Carlo),
emp(Luca), emp(Jane), emp(Linda)}.
The intersection of all closed repairs is:⋂

A∈Repair(K )) ClR(A)= {directs(Tom,d1), directs(Tom,d2), works_in(Carlo,Statistics),
works_in(Luca,Statistics), works_in(Jane,Statistics), emp(Carlo), emp(Jane), emp(Luca),
emp(Tom), emp(John), emp(Linda)}.

Observe that in the intersection of all closed repairs there is works_in(Luca,Statistics).
That means that works_in(Luca,Statistics) is ICR-entailed from the knowledge base.
Whereas, works_in(Linda,Statistics) is not ICR-entailed since the facts about Linda are
conflicting (because she works also for the department of Accounting).



3. Argumentation Framework, Deepening and Clarification

In what follows we quickly recall the definition of argumentation framework in the con-
text of rule-based languages. We use the definition of argument of [8] and extend it to the
notions of deepened and clarified arguments. Given a knowledge base K = (F ,R,N ),
the corresponding argumentation framework A FK is a pair (Arg,Att) where Arg is
the set of arguments that can be constructed from F and Att is an asymmetric binary re-
lation called attack defined over Arg×Arg. Given an argument a we denote by Supp(a)
the support of the argument and by Conc(a) the conclusion.

Example 3 (Argument) The following argument indicates that John is an employee be-
cause he directs department d1:

a = ({directs(John,d1)},{directs(John,d1),emp(John)},emp(John)).

Example 4 (Attack) Consider the argument a of Example 3, the following argument
b = ({supervises(Tom,John),works_in(Tom,d1)},supervises(Tom,John)∧
works_in(Tom,d1)) attacks a, because {supervises(Tom,John)∧works_in(Tom, d1),
directs(John,d1)} is R-inconsistent since it violates the constraint n2.

The results of [8] show the equivalence between sceptically acceptance under pre-
ferred semantics and ICR-entailment. Let us now propose functionalities that give the
User the possibility to manipulate arguments to gain clarity for query answering and
namely: deepening and clarification. Deepening aims at showing the reason why an ar-
gument attacks another. In our knowledge base the attack is justified by the violation of a
constraint. Put differently, an argument attacks another argument if the conclusion of the
former and the hypothesis of the latter are mutually exclusive. Thus deepening amounts
to explain the attack between two arguments by showing the violated constraint.

Definition 2 (Deepening D) Given two arguments a,b ∈ A . The mapping deepening
denoted by D is a total function from the set Att to 2N defined as follows: D(b,a) = {n|

1. n ∈N and ,
2. ∃ f ∈ Supp(a) such that ClR({Conc(b), f}) |= Hn.
}

Note that Hn is the hypothesis of the constraint n.

Example 5 (Deepening) Consider the argument a of Example 3, the argument b =
({supervises(Tom,John) ,works_in(Tom,d1)}, supervises(Tom,John)∧
works_in(Tom,d1)) attacks a, hence deepening is D(b,a) = {∀x∀y∀z(supervises(x,y)∧
work_in(x,z)∧directs(y,z))→⊥}. This explains why the argument b attacks a.

The information carried by the argument would be more useful if the structure ex-
hibits the line of reasoning leading to the conclusion, called clarifying the argument.

Definition 3 (Clarifying C) Given an argument a ∈ A . The mapping clarification de-
noted by C is a total function from the set A to 2R such that: C(a= 〈F0, ...,Fn〉) = {r|r ∈
R s.t r is applicable to Fi and the application of r on Fi yields Fi+1 for all i ∈ {0, ...,n}}.

Definition 4 (Clarified Argument) Given an argument a∈A . The corresponding clar-
ified argument Ca is a 3-tuple 〈Supp(a),C(a),Conc(a)〉 such that C(a)⊆R are the rules
used to derive the conclusion Conc(a).



Example 6 (Clarification count. Example 3) A clarified version of the argument a
is Ca =({diretcs(John,d1)},{∀x∀d directs(x,d) → emp(x)},emp(John))} such that
Supp(Ca)= {directs(John,d1)}, C(Ca)= {∀x∀d directs(x,d)→ emp(x)} and Conc(Ca)=
emp(John).

4. Dialectical Explanation for Query Failure

In what follows, we describe a simple dialectical system of explanation based on the
work of [9]. Our system is custom-tailored for the problem of Query Failure Explanation
under ICR-semantics in inconsistent knowledge bases with rule-based language. Our di-
alectical explanation involves two parties: the User and the Reasoner. The User wants
to understand why the query is not ICR-entailed and the Reasoner provides a respond
aiming at showing the reason why the query is not ICR entailed. We model this explana-
tion through a dialogue composed of moves (speech acts) put forward by both the User
and the Reasoner. This dialogue is governed by rules (pre/post conditions rules, termi-
nation rules, success rules) that specify what type of moves should follow the other, the
conditions under which the dialogue terminates, and when and under which conditions
the explanation has been successfully achieved (success rules).

We denote by Arg+(Q) the set of all arguments that support the query Q, namely
a ∈ Arg+(Q) iff Conc(a) |= Q. In what follows we define types of moves that can be
used in the dialogue.

Definition 5 (Moves) A move is a 3-tuple m = 〈ID, I,ω〉 such that:

1. m is an explanation request, denoted by mERQ iff ID =User, I is a query Q and ω

is an argument supporting Q.
2. m is an explanation response, denoted by mERP iff ID=Reasoner, I is an argument

supporting Q and ω is an argument such that ω attacks I.
3. m is a follow-up question, denoted by mFQ iff ID =User, I is an argument and ω

is either Conc(I) or an argument ω1 that supports Q s.t (ω,ω1) ∈ Att.
4. m is a follow-up answer, denoted by mFA iff ID = Reasoner, I is an argument and

ω is either a deepening D or a clarified argument C(I).

The explanation request mERQ = 〈User,Q,ω〉 is an explanation request made by the
User asking "why the query Q is not ICR-entailed while there is an argument ω as-
serts the entailment of Q", an explanation response mERP = 〈Reasoner,ω,ω1〉 made by
the Reasoner is an explanation for the previous inquiry by showing that the argument
ω (that supports Q) is the subject of an attack made by ω1. The User also can ask
a follow-up question if the Reasoner provides an explanation. The follow-up question
mFQ = 〈User,ω1,ω〉 is a compound move, it can represent a need for deepening (the
User wants to know why the argument ω1 is attacking the argument ω) or the need for
clarification (how the argument ω1 comes to a certain conclusion). To distinguish them,
the former has ω = Conc(ω1) and the latter has ω as an argument. A follow-up answer
mFA = 〈Reasoner,ω1,ω

′
1〉 is also a compound move. Actually, it depends on the follow-

up question. It shows the argument ω1 that needs to be deepened (resp. clarified) and its
deepening (resp. clarification) by the deepening mapping D(ω1,ω) (resp. clarification
mapping C(ω)) in Definition 4 (resp. Definition 6). An example is provided afterward.



In what follows we specify the structure of dialectical explanation and the rules that
have to be respected throughout the dialogue.

Definition 6 (Dialectical Explanation) Given a QFEP P . A dialectical explana-
tion Dexp for P is a non-empty sequence of moves 〈ms

1,m
s
2, ...,m

s
n〉 where s ∈

{ERQ,FQ,ERP,FA} and i ∈ {1, ...,n} such that:

1. The first move is always an explanation request mERQ
1 , we call it an opening.

2. s ∈ {ERQ,FQ} iff i is odd, s ∈ {ERP,FA} iff i is even.
3. For every explanation request mERQ

i = 〈User, Ii,ωi〉, Ii is the query Q to be ex-
plained and ωi is an argument supporting Q and for all mERQ

j s.t j < i ωi 6= ω j.
4. For every explanation response mERP

i = 〈Reasoner, Ii,ωi〉 s.t i ≥ 1, Ii = ωi−1 and
ωi = ω ′ s.t (ω ′, Ii) ∈ Att.

5. For every follow-up question mFQ
i = 〈User, Ii,ωi〉 , i > 1, Ii = ωi−1 and ω is either

Ii−1 or Conc(ωi−1).
6. For every follow-up answer mFA

i = 〈Reasoner, Ii,ωi〉 , i > 1, Ii = Ii−1 and ωi =
D(Ii,ωi−1) or ω = C(Ii).

We denote by Arguser(Dexp) the set of all arguments put by the User in the dialogue.

Every dialogue has to respect certain rules (protocol). Theses rules organize the
way the Reasoner and the User should put the moves. For each move we specify the
conditions that have to be me for the move to be valid (preconditions). We also specify
the conditions that identify the next moves (postconditions).

Definition 7 (Pre/Post Condition Rules) Given a QFEP P and a dialectical explana-
tion Dexp for P . Then, Dexp has to respect the following rules:

Explanation request:

• Preconditions: The beginning of the dialogue or the last move of the Rea-
soner was either an explanation response or a follow-up answer.

• Postconditions: The next move must be an explanation answer.

Explanation response:

• Preconditions: The last move by the User was an explanation request.
• Postconditions: The next move must be either another explanation request (it

may implicitly means that the User had not understood the previous expla-
nation) or a follow-up question.

Follow-up question:

• Preconditions: The last move by the Reasoner was an explanation response
or this follow-up question is not the second in a row.

• Postconditions: The next move must be a follow-up answer.

Follow-up answer:

• Preconditions: The last move by the User was a follow-up question.
• Postconditions: The next move must be an explanation request (it may im-

plicitly means that the User had not understood the previous explanation).



Beside the previous rules, there are termination rules that indicate the end of a di-
alectical explanation.

Definition 8 (Termination Rules) Given a QFEP P and a dialectical explanation Dexp
for P . Then, Dexp terminates when the User puts an empty explanation request mERQ

i =
〈User, /0, /0〉 or when ArgUser(Dexp) = Arg+(Q).

The rules in Definition 7 & 8 state that the Reasoner is always committed to re-
spond with an explanation response, the User then may indicate the end of the dialogue
by an empty explanation request (Definition 8) declaring his/her understanding, other-
wise starts another explanation request (this indicates that he/she has not understood the
last explanation) or asks a follow-up question, the User cannot ask more than two suc-
cessive follow-up questions. If the User asks a follow-up question then the Reasoner is
committed to a follow-up answer. When the User asks for another explanation he/she
cannot use an argument that has already been used. If the User ran out of arguments and
he/she has not yet understood, the dialogue ends (Definition 8) and the explanation is
judged unsuccessful. It is important to notice that when the Reasoner wants to answer the
User there may be more than one argument to chose. There are many “selection strate-
gies” that can be used in such case (for instance, the shortest argument, the least attacked
argument...etc), but their study is beyond the scope of the paper.

In what follows we elaborate more on the success and the failure of an explanation.

Definition 9 (Success Rules) Given a QFEP P and a dialectical explanation Dexp for
P . Then, Dexp is successful when it terminates with an empty explanation request mERQ

i =
〈User, /0, /0〉, otherwise it is unsuccessful.

A dialectical explanation is judged to be successful if the User terminates the dia-
logue voluntarily by putting an empty explanation request. If the User has used all ar-
guments supporting Q then he/she is forced to stop without indicating his/her under-
standing, in this case we consider the explanation unsuccessful. By virtue of the equiv-
alence between ICR-semantics and argumentation presented in Section 3, the existence
of response is always guaranteed. This property is depicted in the following proposition.

Proposition 1 (Existence of response) Given a QFEP P and a dialectical explanation
Dexp for P . Then, For every ms

i ∈ Dexp s.t s ∈ {ERQ,FQ} and 1 ≤ i ≤ |Dexp|, the next
move ms

i+1 s.t s ∈ {ERP,FA} always exists.

5. Conclusion

In this paper, we have presented a dialectical approach for explaining boolean conjunc-
tive queries failure, designated by Query Failure Explanation Problem (QFEP), in an in-
consistent ontological knowledge base where inconsistency is handled by inconsistency-
tolerant semantics (ICR) and issued from the set of facts. The introduced approach relies
on both (i) the relation between ontological knowledge base and logical argumentation
framework and (ii) the notions of argument deepening and clarifications. So, through a
dialogue, the proposed approach explains to the User how and why his/her query is not
entailed under ICR semantics.



We currently investigate the explanation problem not only for Query Failure but
also for Query Answering. We have proposed a Query Explanation framework under the
CoGui editor[1] and plan to test the two approaches within the DUR-DUR ANR project
which investigates the use of argumentation in agri-food chains.
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