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Extending Acyclicity Notions for Existential Rules
(long version)

Jean-Francois Baget and Fabien Garreaw’ and Marie-Laure Mugnier 2 and Swan Roche?

This report contains a revised version (July 2014) of theguahat Paper contributions. We generalize known acyclicity conditions,

will appear in the proceedings of ECAl 2014 and an appenditkwi first, for plain existential rules, second, for their exiensto non-

proofs that could not be included in the paper for space rettm monotonic negation with stable semantics.

reasons. 1. Plain existential rulesAcyclicity conditions found in the liter-
ature can be classified into two main families: the first onestrains

Abstract. Existential rules have been proposed for representing onth€ Way existential variables are propagated during theehag.,
tological knowledge, specifically in the context of OntojeBased ~ [13,[25,L18], and the second one constrains dependenciesdret
Query Answering. Entailment with existential rules is ucidable. ~ 'Ules, i.., the fact that a rule may lead to trigger anothig, e.g.,
We focus in this paper on conditions that ensure the teripinat [214,14.12]. These conditions are based on different grapi all

of a breadth-first forward chaining algorithm known as thasgn ~ Of them can be seen as forbidding “dangerous” cycles in theide
First, we propose a new tool that allows to extend existinglegity ~ €red graph. We define a new family of graphs that allows toyunif
conditions ensuring chase termination, while keeping gmodplex- and strictly generallge these acyclicity notions, withndreasing
ity properties. Second, we consider the extension to exislaules ~ WOrst-case complexity. . . . .
with nonmonotonic negation under stable model semantidsfan 2. Extension to nonmonotonic negatidfionmonotonic negation

ther extend acyclicity results obtained in the positiveecas is a useful feature in ontology modeling. Nonmontonic egitens to
existential rules were recently considered.in [8] with tfied nega-

tion, [17] with well-founded semantics and [23] with stalbf®del
1 INTRODUCTION semantics. The latter paper focuses on cases where a uniifee fi
model exists; we consider the same rule framework, howeitsr w
out enforcing a unique model. We further extend acyclicégults
obtained on positive rules by exploiting negative inforimaias well.
The paper is organized according to these two issues.

Ontology-Based Query Answering is a new paradigm in data-man
agement, which aims to exploit ontological knowledge whereas-

ing data.Existential ruleshave been proposed for representing on-
tological knowledge, specifically in this contekt [8, 3]. 83e rules
allow to assert the existence of unknown individuals, aremssl 2 PRELIMINARIES
feature in an open-domain perspective. They generalihéwigight

description logics, such as DL-Lite arfiC [10, [1] and overcome An atomis of the formp(ty, . . ., tx) wherep is a predicate of arity
some of their limitations by allowing any predicate arityvesll as ~ and thet; are terms, i.e., variables or constants.aiomsets a finite
cyclic structures. set of atoms. IfF" is an atom or an atomset, we denotetbyms F')

In this paper, we focus on a breadth-first forward chainingpal (resp.var{F')) the set of terms (resp. variables) that occuinin
rithm, known as thehasein the database literaturie [24]. The chase the examples illustrating the paper, all the terms are btasa(de-
was originally used in the context of very general database ¢ noted byz, y, z, etc.), unless otherwise specified. Given atomsets
straints, called tuple-generating dependencies, whigh tiee same  A: and A2, ahomomorphisnh from A; to A, is a substitution of
logical form as existential ruleg][6]. var{ Ar) by termg Az) such thath(A;) C As.

Given a knowledge base composed of data and existentia, rule  An existential rulgfand simply a rule hereafter) is of the fodh=
the chase triggers the rules and materializes performesientes VZVy(B — 3ZH), whereB and H are conjunctions of atoms, with
in the data. The “saturated” data can then be queried likassel var§B) = ZU g, andvar{H) = ¥ U Z. B andH are respectively
cal database. This allows to benefit from optimizations enginted  called thebodyand theneadof R. We also use the notatiobedy R)
in current data management systems. However, the chase énno for B andheadR) for H. Variablesz, which appear in bott3 and
sured to terminate— which applies to any sound and completéym  H, are calledfrontier variables Variablesz, which appear only in
anism, since entailment with existential rules is undedielg5,[11]  H, are callecexistential variablesHereafter, we omit quantifiers in
on tuple-generating dependencies). Various acyclicitions ensur- ~ rules as there is no ambiguity. E.g(x,y) — p(y, z) stands for
ing chase termination have been proposed in knowledgesept@  VzVy(p(z,y) — 3z(p(y, 2))).

tion and database theory. An existential rule with an empty body is calledfact A fact
is thus an existentially closed conjunction of atoms.BAolean
1 INRIA, France conjunctive query(BCQ) has the same form. Knowledge base
2 University of Angers, France K = (F,R) is composed of a finite set of facts (which is seen as

3 University of Montpellier, France a single fact)F" and a finite set of existential rulé®. The fundamen-
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tal problem associated with query answering, called BENJAIL -
MENT, is the following: given a knowledge ba$é, R) and a BCQ
Q, is it true thatF, R | Q, wherel= denotes the standard logical
consequence? This problem is undecidable (which folloasfthe
undecidability of the implication problem on tuple-gerterg depen-
denciesl[5, 11]).

In the following, we see conjunctions of atoms as atomsetsilé\
R : B — H is applicableto an atomsef" if there is a homomor-
phisms from B to F'. Theapplication ofR to F' w.r.t. = produces an
atomse(F, R,m) = F Ur(safé H)), wheresafé H) is obtained
from H by replacing existential variables with fresh variablese(s
Exampldl).

The chaseprocedure starts from the initial set of facks and
performs rule applications in a breadth-first manner. S#werase
variants can be found in the literature, mailglivious (or naive),
e.g., [7], skolem[25], restricted (or standard)[[15], andore chase
[14]. The oblivious chase performs all possible rule aggtians. The
skolem chaseelies on a skolemisation of the rules (notat&k): for
each ruleR, sk(R) is obtained fromR by replacing each occurrence
of an existential variablg with a functional termf,* (&), wherez is
the set of frontier variables iR. Then, the oblivious chase is run on
skolemized rules.

Example 1 (Oblivious / Skolem chase)Let R = p(z,y) —
p(z,z) and F' = {p(a,b)}, wherea and b are constants. The
oblivious chase does not halt: it applig® according tohy =
{(z,a), (y,b)}, hence add®(a, zo); then, it appliesR again ac-
cording toh1 = {(z,a), (y,20)}, and addsp(a, z1), and so on.
The skolem chase considers the rple, y) — p(z, fI(x)); it adds
p(a, f*(a)) then halts.

Due to space restrictions, we do not detail on the other crease
ants. Given a chase varia6t, we call C-finite the class of set of
rulesR, such that the”-chase halts ofF, R) for any atomset".
It is well-known that oblivious-finiteC skolem-finiteC restricted-
finite C core-finite (see, e.g.l [26]). WheR belongs to aC-finite
class, BCQENTAILMENT can be solved, for any” and @, by run-

with origin (p, i) are built as follows: there is an edge frqm ¢) to
each position ofc in H; furthermore, for each existential variahje

in H occurring in position(q, j), there is a special edge frofp, 7)

to (q, ). A set of rules is weakly-acyclic if its associated graph has
no cycle passing through a special edge (see Exdmple 2).

Example 2 (Weak-acyclicity) Let Ry = h(z) — p(z,y) and
R2 = p(u,v),q(v) — h(v). The position graph of R1, R2} con-
tains a special edge froffk, 1) to (p, 2) due toR; and an edge from
(p,2) to (h,1) due toR,. Thus{R1, R2} is not wa.

Weak-acyclicity has been generalized, mainly by shifting fo-
cus from positions to existential variablgsift-acyclicity (ja)18])
or to positions in atoms instead of predicatesper-weak-acyclicity
(swa)[25]). Other related notions can be imported from logic pro-
gramming, e.g.finite domain (fd)9] and argument-restricted (ar)
[22]. See the first column in Figuté 1, which shows the indosi
between the corresponding classes of rules; all thesesiocis are
known to be strict.

3.2 Rule dependency-based approach

In the second approach, the aim is to avoid cyclic triggeahgiles
[2,[14,[3[4]12]. We say that a rule, dependn a ruleR; if an
application of R; may lead to a new application @tz: there exists
an atomsef’ such thatR; is applicable taF with homomorphismr
and R, is applicable toF’ = «(F, Ry, ) with homomorphismr’,
which isnew(r’ is not a homomorphism t&") anduseful(z’ can-
not be extended to a homomorphism frdifa to F’). This abstract
dependency relation can be computed with a unification tipera
known as piece-unifief [3]. Piece-unification takes exist¢vari-
ables into account, hence is more complex than the usuatatidfin
between atoms. Aiece-unifierof a rule bodyB. with a rule head
H, is a substitutiory, of vargB3) U var{H1), where B} C Bj
and H; C Hi, such that(1) u(B3) = pu(H1), and(2) existential
variables inH are not unified withrseparatingvariables ofBj, i.e.,
variables that occur both iB3 and in(B- \ B3); in other words, if a
variablez occuring inBj is unified with an existential variablgin

ning theC'-chase or(F, R), which produces a saturated set of facts 7/ then all atoms in which: occur also belong td}. It holds that

F*, then checking iff”* E Q.

3 KNOWN ACYCLICITY NOTIONS

Acyclicity notions can be divided into two main families,cbaof
them relying on a different graph. The first family relies ograph
encoding variable sharing betwepositionsin predicates, while the
second one relies on a graph encodilgpendenciebetween rules,
i.e., the fact that a rule may lead to trigger another ruletéef).

3.1 Position-based approach

In the position-based approach, dangerous cycles are passing
through positions that may contain existential variabiesyitively,

such a cycle means that the creation of an existential \ariaba
given position may lead to creating another existentialabée in
the same position, hence an infinite number of existentidhbkes.
Acyclicity is then defined by the absence of dangerous cydlke
simplest acyclicity notion in this family is that afieak-acyclicity

(wa) [15], which has been widely used in databases. It relies an ad

rected graph whose nodes are the positions in predicatedegmae
by (p, ¢) position: in predicatep). Then, for each ruld? : B — H
and each frontier variable in B occurring in positionp, i), edges

R, depends oIR; iff there is a piece-unifier oB; with H, satisfy-
ing some easily checked additional conditions (atom egagihand
usefulness[19, 12]). Following Examglé 3 illustrates thféecence
between piece-unification and classical unification.

Example 3 (Rule dependency)Let R, and R» from Exampl€R. Al-
though the atomg(u,v) € Bz andp(x,y) € H; are unifiable,
there is no piece-unifier aB, with H;. Indeed, the most general
unifier u = {(u, z), (v, y)} (or, equivalently{(z, u), (y,v)}), with
B = {p(u,v)} and H{ = Hy, is not a piece-unifier becauseis
unified with an existential variable, whereas it is a sepmgivari-
able of B; (thus,q(v) should be included itB5). It follows that R,
does not depend oR; .

The graph of rule dependencieof a set of rulesk, denoted
by GRD(R), is a directed graph with set of nod& and an edge
(Ri, R;) if R; depends orR;. E.g., with the rules in Examplé 3, the
only edge is(Rz, R1). When the GRD is acyclicaGRD, [2]), any
derivation sequence is finite.

3.3 Combining both approches

Both approaches are incomparable: there may be a dangerdes c
on positions but no cycle w.r.t. rule dependencies (Exa@pied3),



and there may be a cycle w.r.t. rule dependencies wheresshale
no existential variables (e.qa(x,y) — p(y,x)). So far, attempts to
combine both notions only succeded to combine them in a “faodu
way”, by considering the strongly connected componentsq($.of
the GRD [2]14]; briefly, if a chase variant stops on each subke
rules associated with a s.c.c., then it stops on the wholefgetes.
In this paper, we propose an “integrated” way of combininghbo
approaches, which relies on a single graph. This allows ify pre-
ceding results and to generalize them without increasingpbexity.
The new acyclicity notions are those with a gray backgroumiig-
ure[1.

Finally, let us mentiormodel-faithful acyclicity (mfa[12], which
cannot be captured by our approach. Briefly, checkiriginvolves
running the skolem chase until termination or a cyclic fiorel term
is found. The price to pay is high complexity: checking if & ek
rules is model-faithful acyclic for any set of facts is 2EXRIE-
complete. Checkingnodel-summarizing acyclicity (mgdp], which
approximates mfa, remains EXPTIME-complete. In contretstck-
ing position-based properties is in PTIME and checking aGRD
co-NP-complete.

Figure 1. Relations between recognizable acyclicity properties.imdlu-
sions are strict and complete (i.e., if there is no path bebae/o properties
then they are incomparable).

It remains to specify for which chase variants the above laityc
notions ensure termination. Sinogfa generalizes all properties in
Figureld, and sets of rules satisfyingaare skolem-finite, all these
properties ensur€'-finiteness, for any chase variaft at least as
strong as the skolem chase. We point out that the oblivioasemay
not stop onwarules. Actually, the only acyclicity notion in Figuré 1
that ensures the termination of the oblivious chasg&SRD, since alll
other notions generaliaga.

4 EXTENDING ACYCLICITY NOTIONS

In this section, we combine rule dependency and propagefiexis-
tential variables into a single graph. W.l.o.g. we assunaédrstinct
rules do not share any variable. Given an atore= p(t1,...,t),
the'" position ina is denoted byd, 7], with pred[a,i]) = p and
term([a,i]) = t;. If A is an atomset such thate A, we say that
[a,i]isin A. If term([a,1]) is an existential (resp. frontier) variable,
[a,d] is called anexistential(resp.frontier) position. In the follow-
ing, we use “position graph” as a generic name to denote ahgrap
whose nodes are positionsatoms

We first define the notion of a basic position graph, which sake
each rule in isolation. Then, by adding edges to this gragtdeiine
three position graphs with increasing expressivity, eflgwing to
check termination for increasingly larger classes of rules

Definition 1 ((Basic) Position Graph (PG)) Theposition graptof
aruleR : B — H is the directed graptPG(R) defined as follows:

e there is a node for eachu[:] in B orin H;

o for all frontier positions p,i]€ B and all [, j]€ H, there is an
edge from p, 7] to [ h, j] if term([b,4]) = term([h, 5]) or if [ A, j]
is existential.

Given a set of rulesR, the basic position graplof R, denoted by
PG(R), is the disjoint union oPG(R;), for all R; € R.

An existential position 4, ] is said to beinfinite if there is an
atomsetF’ such that running the chase éhproduces an unbounded
number of instantiations dern{[a, i]). To detect infinite positions,
we encode how variables may be “propagated” among rules by
adding edges t&#G(R), calledtransition edgeswhich go from po-
sitions in rule heads to positions in rule bodies. The setasfdition
edges has to beorrect if an existential positiond, ] is infinite,
there must be a cycle going through {] in the graph.

We now define three position graphs by adding transition £dge
to PG(R), namely PGT(R), PGP (R) and PGY(R). All three
graphs have correct sets of edges. Intuitivélg™ (R) corresponds
to the case where all rules are supposed to depend on alt rules
its set of cycles is in bijection with the set of cycles in thed-
cate position graph defining weak-acycliciffG” (R) encodes ac-
tual paths of rule dependencies. Final3GV (R) adds information
about the piece-unifiers themselves. This provides an atE@n-
coding of variable propagation from an atom position to haot

Definition 2 (PG*X) Let R be a set of rules. The three following
position graphs are obtained froRG(R) by adding a (transition)
edge from each'" position [, k] in a rule head H; to eachk'"
position [, k] in a rule body B;, with thesame predicatgrovided
that some condition is satisfied :

o full PG, denoted b)PGF(R): no additional condition;

o dependency P@lenoted by?G” (R): if R, depends directly or
indirectly onR;, i.e., if there is a path fronR; to R; in GRD(R);

o PG with unifiers denoted byPGY (R): if there is a piece-unifier
p of B; with the head of an agglomerated rulg/ such that
u(term([b, k])) = u(term([h, k])), where R/ is formally defined
below (DefinitiorB).

An agglomerated rule associated witR;, R;) gathers informa-
tion about selected piece-unifiers along (some) paths fianto
(some) predecessors Bf;.



L p(u,v) | \
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Figure 2. PGFT(R) andPGP (R) from Exampld}. Positiond, i] is rep-
resented by underlining the i-th term in Dashed edges do not belong to
PGP (R).

Definition 3 (Agglomerated Rule) GivenR; and R; rules fromR,
an agglomerated rule associated wit®;, Rj) has the following
form: .

R} = Bi Uicrctermgn,) fr(t) — Hi

wherefr is a new unary predicate that does not appearin and
the atomsfr(t) are built as follows. LetP be a non-empty set of
paths fromR; to direct predecessors d®; in GRD(R). Let P =
(R1,..., Rn) be a path inP. One can associate a rulg” with P
by building a sequenc®&; = R?,...,RE = RP such thatvl <
1 < n, there is a piece-unifien; of B;.; with the head of2”, where
the body o}, , is By U{fr(t) | tis a term of H} unified iny., }, and
the head of?}, , is H:. Note that for alll, H = H., however, for
I # 1, RY may have less existential variables th&n due to the
added atoms. The agglomerated ritg built from { R”|P € P} is

R} =Upecp RF.
The following inclusions follow from the definitions:
Proposition 1 (Inclusions betweenPG*X) Let R be a set of rules.

PGY(R) C PGP(R) C PG¥(R). Furthermore, PGP (R)
PGF (R) if the transitive closure of/RD(R) is a complete graph.

Example 4 (PG* and PGP) LetR = {Ri, R>} from Exampl&R.
Figure[d picturesPG* (R) and PGP (R). The dashed edges belong
to PG (R) but not toPGP (R). Indeed,R. does not depend aR; .
PG¥ (R) has a cycle while?GP (R) has not.

Example 5 (PGP and PGY) Let R {R1, R2}, with Ry
t(x,y) — p(2,9),q(y) and Ry = p(u,v),q(u) — t(v,w). In
Figure[3, the dashed edges belongRa!” (R) but not toPGY (R).
Indeed, the only piece-unifier &f; with H; unifiesu andy. Hence,
the cycle inPGP (R) disappears inPGY (R).

Figure 3. PGP (R)andPGY (R)
belong toPGY (R).

We now study how acyclicity properties can be expressed en po
sition graphs. The idea is to associate, with an acyclicibperty, a
function that assigns to each position a subset of positiemshable
from this position, according to some propagation constsathen,
the property is fulfilled if no existential position can beched from
itself. More precisely, anarking functionY” assigns to each node
[a,4] in a position graphPG™, a subset of its (direct or indirect)
successors, called itsarking A marked cycldor [a, 7] (w.r.t. X and
Y)is acycleC in PG¥ such that{, ije C and for all ', i']e C,
[a’,i'] belongs to the marking ofi, i]. Obviously, the less situations
there are in which the marking may “propagate” in a positicapd,
the stronger the acyclicity property is.

Definition 4 (Acyclicity property) Let Y be a marking function

and PGX be a position graph. Thacyclicity propertyassociated

with Y in PG, denoted byv' ¥, is satisfied if there is no marked
cycle for an existential position iPG™. If Y~ is satisfied, we also
say thatPG* (R) satisfiesy’.

For instance, the marking function associated with weak-
acyclicity assigns to each node the set of its successdP&ifi(R),
without any additional constraint. The next propositioates that
such marking functions can be defined for each class of rides b
tweenwa andswa (first column in Figur&l), in such a way that the
associated acyclicity property IRG characterizes this class.

Proposition 2 A set of rulesR is wa (resp. fd, ar, ja, swa) iff
PGF (R) satisfies the acyclicity property associated witt- (resp.
fd-, ar-, ja-, swa-) marking.

As already mentioned, all these classes can be safely eddnd
combining them with the GRD. To formalize this, we recall tie
tion Y < from [12]: given an acyclicity property’, a set of rulesR is
said to satisfyt’ < if each s.c.c. off RD(R) satisfiesy’, except for
those composed of a single rule with no I&)WhetherR satisfies
Y < can be checked oRG” (R):

Proposition 3 LetR be a set of rules, anli” be an acyclicity prop-
erty. R satisfiesy < iff PGP (R) satisfiesy, i.e.,Y< =Y7P.

For the sake of brevity, it7 andY> are two acyclicity properties,
we writeY: C Y> if any set of rules satisfyind; also satisfied?.
The following results are straightforward.

Proposition 4 Let Y1, Y2 be two acyclicity properties. I¥7 C Y5,
theny,”? C VL.

Proposition 5 LetY be an acyclicity property. WiGRD ¢ Y then
Y cYP.

Hence, any class of rules satisfying a prop@fty strictly includes
bothaGRD and the class characterized by (e.g., FigurélL, from
Column 1 to Column 2). More generally, strict inclusion ire thirst
column leads to strict inclusion in the second one:

Proposition 6 Let Y31,Y> be two acyclicity properties such that
Yi C Yo, wa C Yy andYa ¢ YiP. Theny” C YiP.

The next theorem states th&GY is strictly more powerful than
PGP; moreover, the “jump” from” to Y'Y is at least as large as
fromY toY”.

from Exampldb. Dashed edges do not 3 This particular case is to covaGRD in which each s.c.c. is an isolated

node.



Theorem 1 LetY be an acyclicity property. I ¢ Y2 thenY?
Y'Y Furthermore, there is an injective mapping from the setsiigfs
satisfyingY’? but notY’, to the sets of rules satisfyirig?” but not
YP.

Proof: AssumeY C YP andR satisfiest ” but notY. R can be
rewritten intoR’ by applying the following steps. First, for each rule
R; = Bz[f,:lﬂ — Hl[y”,é] € R, |etRi,1 = Bz[f,m — pi(f, g)
wherep; is a fresh predicate; anfe; » = pi(Z,y) — Hly, Z]. Then,
for each ruleR; 1, let R; ; be the rule(B; ; — H;,1) with B ; =
Bi1 U{p}(x;:) : YR; € R}, wherep) ; are fresh predicates and
x;,; fresh variables. Now, for each rulB; ., let R; , be the rule
(Bi2 — Hl,)with H. 5 = Hi2 U {p} ;(2i;) : VR; € R}, where
zi,; are fresh existential variables. LBt = |J {Ri ., Rj.}. This
R;ER
construction ensures that ea, depends or?; ;, and eachR; ;
depends on each;, ,, thus, there is &ransitionedge from eactf; ,
to R, and from eachR) , to eachR; ;. Hence,PG”(R’) con-
tains exactly one cycle for each cycle PG* (R). Furthermore,
PGP (R’) contains at least one marked cycle wYt.and therR’
does not satisfy’ . Now, each cycle inPGY (R’) is also a cycle
in PGP (R), and, sincePGP (R) satisfiesy’, PGY (R’) also does.
Hence,R’ does not belong t&® buttoY'V. O
We also check that strict inclusions in the second columnign F
ure[d lead to strict inclusions in the third column.

Theorem 2 LetY; and Yz be two acyclicity properties. I¥;° C
Y5 thenY” C Yy.

Proof: Let R be a set of rules such th& satisfiesys” but does not
satisfyY;”. We rewriteR into R’ by applying the following steps.
For each pair of rules;, R; € R such that there is a dependency
path fromR; to R;,for each variabler in the frontier of R; and
each variableg in the head ofR;, if  andy occur both in a given
predicate position, we add to the body®f a new atonp; ;.«,y ()
and to the head aR; a new atony;, ;. (y), wherep; ; .., denotes
a fresh predicate. This construction allows each term frioenhtead
of R; to propagate to each term from the bodyRf, if they share
some predicate position iR. Thus, any cycle iPG® (R) is also in
PGY(R'), without any change in the behavior w.r.t. the acyclicity
properties. Henc®' satisfiesty’ but does not satisfy;”. O
The next result states that" is a sufficient condition for chase
termination:

Theorem 3 LetY be an acyclicity property ensuring the halting of
some chase varian®. Then, theC'-chase halts for any set of rules
R that satisfies”V (hencey?).

Example 6 Consider again the set of ruleR from Exampldb.
Figure [3 pictures the associated position grapR&®(R) and
PGY(R). R is not aGRD, nor wa, nor wa” since PGP (R)

contains a (marked) cycle that goes through the existepiiei-
tion [t(v, w), 2]. However, R is obviouslywal since PGY (R) is

acyclic. Hence, the skolem chase and stronger chase vartzait
for R and any set of facts.

Finally, we remind that classes froma to swa can be recog-
nized in PTIME, and checkingGRD is co-NP-complete. Hence,
as stated by the next result, the expressiveness gain iswith-
creasing worst-case complexity.

Theorem 4 (Complexity) LetY be an acyclicity property, an®
be a set of rules. If checking th&® satisfiesY is in co-NP, then
checking thaiR satisfiesy ” or YV is co-NP-complete.

5 FURTHER REFINEMENTS

In this section, we show how to further extedd into YU by
a finer analysis of marked cycles and unifiers. This extenséonbe
performed without increasing complexity. We define thearotfin-
compatiblesequence of unifiers, which ensures that a given sequence
of rule applications is impossible. Briefly, a marked cy@ehich
all sequences of unifiers are incompatible can be ignoresidBehe
gain for positive rules, this refinement will allow one to ¢alzetter
advantage of negation.

We first point out that the notion of piece-unifier is not agprate
to our purpose. We have to relax it, as illustrated by the eeaiple.
We callunifier, of a rule bodyB- with a rule headd, a substitution
wof var{ B3) Uvard H1), whereB; C B> andH; C Hy, such that
u(B3y) = p(H7) (thus, it satisfies Conditiofil) of a piece-unifier).

Example 7 LetR = {Ru1, Rz, R3, R4} with:

Ry p(z1,y1) = q(y1, 21)

R : q(x2,y2) — r(w2,72)

Rs i r(x3,y3) A s(zs,ys) — p(xs,ys)

Ryt q(z4,ya) = s(xa,y4)

There is a dependency cydl®:, R2, Rs, R1) and a corresponding
cycle inPGY. We want to know if such a sequence of rule applica-
tions is possible. We build the following new rule, which oanpo-
sition of R; and R, (formally defined later)Ri ¢, R2 : p(z1,y1) —
q(y1,z1) Ar(yr, z1)

There is no piece-unifier dks with Ry ¢, Rz, sinceys would be a
separating variable mapped to the existential variableThis actu-
ally means that?s is not applicableright after R; ¢,, R>. However,
the atom needed to applyxs, y3) can be brought by a sequence of
rule applications(R1, R4). We thus relax the notion of piece-unifier
to take into account arbitrarily long sequences of rule aggtions.

Definition 5 (Compatible unifier) Let R; and R, be rules. A uni-
fier u of Be with H; is compatibleif, for each position §, 7] in

B3, such thatu(term([a,d])) is an existential variablez in Hi,

PGU(R) contains a path, from a position in which occurs, to
[a, 1], that does not go through another existential positionhédt
wise, . is incompatible

Note that a piece-unifier is necessarily compatible.

Proposition 7 Let R; and R; be rules, and lef: be a unifier ofB2
with H;. If i is incompatible, then no application &> can use an
atominu(Hi).

We define the rule corresponding to the compositionrRefand
R» according to a compatible unifier, then use this notion toeedi
compatible sequence of unifiers.

Definition 6 (Unified rule, Compatible sequence of unifiers)

e Let R, and R» be rules such that there is a compatible unifieof
B; with H;. The associatednified ruleR,, = R; o, R» is defined
by Hy, = p(H1) U p(Hz), and B, = p(B1) U (u(Bz2) \ p(Hy)).

e Let (Ry,...,Rr+1) be a sequence of rules. A sequence=
(R1 p1 Ra... pux Rit1), where, forl < ¢ < k, u; is a unifier
of B;11 with H;, is acompatible sequenagf unifiers if: (1) w1 is
a compatible unifier o8> with Hy, and (2) if £ > 0, the sequence
obtained froms by replacing(R: p1 R2) with Ry ¢, R2 is acom-
patiblesequence of unifiers.

E.g., in Exampl&l7, the sequen@B; p1 Ro pe Rs ps R1), with
the obviousy;, is compatible. We can now improve all previous
acyclicity properties (see the fourth column in Figure 1).



Definition 7 (Compatible cycles) Let Y be an acyclicity property,
and PGV be a position graph with unifiers. Thempatible cycles
for [a,4] in PGY are all marked cycle€ for [a,4] w.rt. Y, such

that there is a compatible sequence of unifiers induced'bprop-

erty Y'Uis satisfied if, for each existential position,[], there is no
compatible cycle ford, i] in PGY.

Results similar to Theored 1 and Theof@m 2 are obtained for
w.rt. Y'Y, namely:

e For any acyclicity property’, YV c YU,
e For any acyclicity propertied; and s, if YV < YY, then
vVt cy/t.

Moreover, Theoreni]3 can be extended & " : let Y be an
acyclicity property ensuring the halting of some chasearafl’; then
the C-chase halts for any set of rulé® that satisfies™V " (hence
Y'Y). Finally, the complexity result from Theorem 4 still holéts
this improvement.

6 EXTENSION TO NONMONOTONIC
NEGATION

We now add nonmonotonic negation, which we denotenby A
nonmonotonic existentigNME) rule R is of the formVavg(B™ A
notBy A...AnotB, — 37ZH),whereB™, B~ = {By ... B, }
and H are atomsets, respectively called fiwsitivebody, thenega-
tive body and the head dR; furthermore,var{ B~) C var§B™).

R is applicableto F if there is a homomorphisr from B to F
such thath(B~) N F = . In this section, we rely on a skolemiza-
tion of the knowledge base. Then, the applicatiorRao F' w.r.t. h
producesh(sk(H)). Ris self-blockingf B~ N (BTUH) # 0, i.e.,
R is never applicable.

stronger than aGRD (since cycles are allowed on rules witbxis-
tential variables) but weaker tham” (since all s.c.c. are necessarily
wa).

By considering extended dependency, we can extend thegesul
obtained withPG® and PGV (note that forPGY we only encode
non-self-blocking unifiers). We can further extelid = classes by
consideringself-blocking compatible sequenadsunifiers. LetC be
a compatible cycle ford, i in PGY, andC,, be the set of all compat-
ible sequences of unifiers induced &y A sequence; . .. ux € C,
is said to be self-blocking if the rul&, ¢,, Ra... Ry oy, R1is
self-blocking. When all sequences(h, are self-blocking(' is said
to be self-blocking.

Example 8 Let R; g(z1),notp(x1) — r(x1,y1), R2 =
r(z2,y2) — s(x2,2), Rs s(zs,yz) — plxa), q(ys).
PGYT({R1,R2,Rs}) has a unique cycle, with a unique in-
duced compatible unifier sequence. The rifile © Re ¢ Rs
q(z1),notp(z1) — r(z1,y1), s(x1,51),p(71),q(p1) is self-
blocking, hencer; ¢ Rz ¢ R3 ¢ R; also is. Thus, there is no “dan-
gerous” cycle.

Proposition 8 If, for each existential positiond], ¢], all compatible
cycles for [z, 4] in PGY are self-blocking, then the stable computa-
tion based on the skolem chase halts.

Finally, we point out that these improvements do not inaeas
worst-case complexity of the acyclicity test.

7 CONCLUSION

We have proposed a tool that allows to unify and generalizetmo
existing acyclicity conditions for existential rules, ttut increasing
worst-case complexity. This tool can be further refined tal ddth
nonmonotonic (skolemized) existential rules, which, te best of

Since skolemized NME rules can be seen as normal logic proour knowledge, extends all known acyclicity conditions thuis kind

grams, we can rely on the standard definition of stable mddéls
which we omit here since it is not needed to understand theeteq
Indeed, our acyclicity criteria essentially ensure thatdhis a finite
number of skolemized rule applications. Although the usledini-
tion of stable models relies on grounding (i.e., instamg@tskolem-
ized rules, stable models ¢f', R) can be computed by a skolem
chase-like procedure, as performed by Answer Set Progragimi
solvers that instantiate rules on the fly[21} 13].

of rules.

Further work includes the implementation of the [foahd exper-
iments on real-world ontologies, as well as the study of ehasi-
ants that would allow to process existential rules with Istalegation
without skolemization.
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First, we consider the natural extensions of a unified rulef.(B)
and of rule dependency: to defife, = R; o, Rz, we add that
B, = u(B;) U u(By); besides,R, depends o, if there is a
piece-unifiens of He with B, such thatR; ¢, R2 is not self-blocking;
if R1 ¢, R is self-blocking, we say that is self-blocking. Note
that this extended dependency is equivalent toptbsitive reliance
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Consider nowPG® with extended dependency: then, R-acyclicity is
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Appendix

Proposition[d A set of rulesR is wa (resp. fd, ar, ja, swa) iff
PGF(R) satisfies the acyclicity property associated with the-
marking (resp.fd-, ar-, ja-, swa-marking).

To prove Propositioh]2 we rely on some intermediary restite.
next proposition is immediate.

Proposition 9 For each edgép;, g;) in the predicate position graph
of a set of rulesRr, there is the following non-empty set of edges
in PGT(R): Ep,q, = {(la,i][a’,]]) | pred[a,i]) = p and
pred[d’, j]) = q}.

Furthermore, these sets of edges form a partition of all sdge
PGT(R).

We now define marking functions, whose associated acyglicit
property corresponds twa, fd, ar, ja or swa when it is applied
on PG¥ (R). The following three conditions, defined for a marking
M([a,1]), make it easy to compare known acyclicity properties.

o (PYT*([a,i]) € M([a,4]).B

e (P2)for all [a’,i']€ M([a,i]) such that &, '] occurs in some
rule headT* ([a’,i']) € M([a,1]),

e (P3) for all variablev in a rule body, such that for all position
[a’,4'] with term([a’,4']) = v, there is §”,i']€ M([a,i]) with
pred[a’,i']) = pred[a”,i']) andterm([a”,i']) = v: [ (v) C
M ([a,1d]), whereI't (v) is the union of all’* (p), wherep is an
atom position in whichy occurs.

(P1) ensures that the marking of a given node includes its succes-
sors ;(P2) ensures that the marking includes the successors of all
marked nodes from a rule head ; aiR8) ensures that for each fron-
tier variable of a rule such that all predicate positions rehieoccurs
are marked, the marking includes its successors.

Definition 8 (Weak-acyclicity marking) A marking M is a wa-
marking wrt X if for any [a,i]€ PG, M([a,d]) is the minimal
set such that:

e (P1)holds,
o forall[d,i'le M([a,i]),T* ([a',i']) C M([a,d])

Observation: The latter condition implie§P2) and(P3).

Proposition 10 A set of rulesR is wa iff PGY(R) satisfies the
acyclicity property associated with thea-marking.

Proof: If R is notwa, then there is some cycle in the graph of pred-
icate positions going throughspecial edgelLet p; be the predicate
position where this edge ends, anlle the existential variable which
occurs inp;. Let M be thewa-marking of any existential position
[a,i] with pred[a,i]) = p andterm([a,i]) = =.

(P1) ensures that the successors @fi] are marked; then, the
propagation function will perform a classic breadth-first/ersal of
the graph. By Propositidd 9, to each cycle in the graph ofipeate
positions ofR corresponds a set of cyclesRG* (R). Sincep; be-
longs to a cycle,d, 7] will obviously be marked by the propagation
function. Hence PG (R) does not satisy the associated acyclicity
property of thewa-marking.

Conversely, ifR is wa, there is no cycle going throughspecial
edgein the graph of predicate positions &f. By Propositior{ D, to

6 For any nodey, I'* (v) denotes the set of (direct) successors.of



each cycle inPGT(R) corresponds a cycle in the graph of pred-

icate positions ofR, hence no cycle ilPG¥ (R) goes through an
existential position. a

We do not recall here the original definitions pd, ar, ja, swa.
The reader is referred to the papers cited in Sedflon 4 dr2j [1
where these notions are reformulated with a common vocghbula

Definition 9 (Finite domain marking) A marking M is a fd-
marking wrt X if for any [a,i]€ PG, M([a,d]) is the minimal
set such that:

« (P1)and(P3)hold,
e forall[a’,i'1€ M([a,d]), T ([a’,i']) \ {[a,i]} C M([a,1]).

Observation: The latter condition implieP2).

Proposition 11 A set of rulesR is fd iff PG¥(R) satisfies the
acyclicity property associated with thi-marking.

Proof: Let R be a set of rules that igd, then for each existential
position p there exists a position;dor each variable of the frontier
in the graph of predicate positions such thatpes not belong to a
cycle. GivenPGT (R) we can see that Conditigi®3) ensures that
Ris fd. ]

Definition 10 (Argument restricted marking) A marking is an
ar-marking wrtX if for any [a, i€ PG™, M ([a,1]) is the minimal
set such that:

e (P1), (P2)and(P3)hold,
o for each existential positiond],i'], I'"([a,4']) C M([a,1]),

Observation:If M is anar-marking, then for all existential positions
[a,i],[a’,i'le PG™, M([a,i]) = M([d',]).

Proposition 12 A set of rulesR is ar iff PGY(R) satisfies the
acyclicity property associated with the-marking.

Proof: LetR be a set of rules that ig-, then there exists a ranking on
terms (i.e., arguments) such that for each rule the rank ekesten-
tial variable needs to be stricly higher than the rank of daafitier
variable in the body and the rank of a frontier variable in tiead
has to be higher or equal to the rank of this frontier variabléhe
body. The marking process is equivalent to the ranking, ¢hdach
time a node is marked, the rank of a term is incremented. Ifave la

cyclic ar-marking, it means that there exists at least one term rankwherep‘
Js

that does not satisfy the property of argument-restridféelcan see

the marking process as a method to compute an argument gankinHZ, 2 U {p!

O

Definition 11 (Joint acyclicity marking) A marking M is a ja-
marking wrt X if for any [a,i]€ PG*X, M([a,4]) is the minimal
set such thatP1), (P2) and (P3) hold.

Proposition 13 A set of rulesR is ja iff PGY(R) satisfies the
acyclicity property associated with the-marking.

Proof: The definition of theja propagation function is the same as
in [18]. Indeed the “Move” set of a position is defined in thensa
way as the marking. Furthermore, by Proposifidn 9, for amdipr
cate positiorp; in the graph of joint-acyclicity, there is a cycle go-
ing throughp; iff for any existential atom positiond], 7] such that
pred|a,i]) = p, we have §,i]e M ([a,1]).

O

Definition 12 (Super-weak-acyclicity marking) A markingM is a
swa-marking wrtX if for any [a, i]€ PG™, M([a,1]) is the mini-
mal set such that :

e (P1l)and(P3)hold,
e for all [a’,i']€ M([a,i]) occuring in a rule head{[a",i']€
't ([d,#]) : «’ anda’” unify} C M([a,1q]).

Proposition 14 A set of rulesR is swa iff PG¥ (R) satisfies the
acyclicity property associated with theva-marking.

Proof: In the original paper of([25], the definition ofwa was
slightly different from this marking, but it has been shown[12],
that swa can be equivalently expressed by a “Move” set similar to
ja. As for theja-marking, the definition of thewa-marking corre-
sponds to the definition of its “Move” set. |

Proof of Propositioi RfFollows from Propositions 10, 10 M2.]13,
and13.

Proposition[d LetY; and Y2 be two acyclicity properties such
thatY: C Y2, wa C Y; andYa ¢ Yi{”. ThenY?” C Yi°.

Proof: LetR be a set of rules such th&t satisfiest> and neitheiy;
noraGRD. R can be rewritten int&R’ by replacing each rul&;
(Bi, H;) € R with a new ruleR; = (B; U {p(z)}, H; U {p(z)})
wherep is a fresh predicate anga fresh variable. Each rule can now
be unified with each rule, but the only created cycles arectirdsch
contain only atomg(z), hence none of those cycles go through exis-
tential positions. Sincera C Y; (and sowa C Y>), the added cycles
do not change the behavior & w.r.t. Y1 andY>. Hence,R' is a set
of rules satisfying> and notY;, and since? RD(R’) is a complete
graph,PGP(R’) = PGF(R’). We can conclude thaR’ satisfies
Y:P but notY;". O

Theorem[d LetY be an acyclicity property. I c Y then
YP c YY. Furthermore, there is an injective mapping from the sets
of rules satisfying’” but notY’, to the sets of rules satisfyirig”
but notY ?.

Proof: (included in the paper) AssumeY C Y andR satisfies
Y but notY. R can be rewritten intd&}’ by applying the follow-
ing steps. First, for each rulB; = B;[Z,y] — H;[y,Z] € R, let
Ri1 = B;[%, 3] — pi(&,§) wherep; is a fresh predicate ; and
Ri2 = pi(%,y) — Hilg,Z). Then, for each rule?; 1, let R; ; be
the rU|E(B;71 — H,’J) with B;,l = Bi,1 @] {pg’i(xj,i) : VRj S R},

; are fresh predicates ang; ; fresh variables. Now, for
each ruleR; ;> let R;, be the rule(B;2 — Hj,) with H, =
i(zi,5) : VR; € R}, wherez; ; are fresh existential vari-

J
ables. LetR’ = |J {Ri.,Ri.}. This construction ensures that
RiER

eachR; , depends onR; ;, and eachR; ; depends on eack) ,,
thus, there is &ransitionedge from eact®; ; to R; , and from each
R’ , to eachR; ;. Hence,PG” (R’') contains exactly one cycle for
each cycle inPGT (R). Furthermore,PGP (R’) contains at least
one marked cycle w.r.&’, and theriR’ is notY”. Now, each cycle
in PGY(R') is also a cycle inlPG (R), and sincePGP (R) satis-
fiesY, PGY(R') also does. Henc&?’ does not belong t&“ but
toyY. 0

Theorem[@ LetY; andY: be two acyclicity properties. I¥;” C
Yy thenY” C Yy.

Proof: (included in the paper) Let R be a set of rules such that
R satisfiesYs” but does not satisfy;”. We rewriteR into R’ by



applying the following steps. For each pair of rules R; € R such Proposition 15 PG¥ is correct.

that R; depends orR;, for each variable: in the frontier ofR; and

each variabley in the head ofR;, if x andy occur both in a given  Proof: Follows from the above definitions. O

predicate position, we add to the body®f a new atonp;, ;,«,, ()

and to the head aR; a new atony; ; .., (v), wherep; ; ., denotes Lemmal If Sisah — btriggering derivation sequence, then there

a fresh predicate. This construction will allow each teronirthe  is a triggering path from(R1, 71) to (R, 7y ) in the support graph

head of R; to propagate to each term from the bodyZ®f, if they of S.

shared some predicate position7i Thus, any cycle inlPGP (R)

is also inPGY (R'), without modifying behavior w.r.t. the acyclicity Proof: There is an edge froriR,, 1) to (R, m,) in the support

properties. HenceR' satisfiesty” but does not satisfy;” . a graph ofS. By removing transitivity edges, it remains a path from
(R1,m) to (Rn, ) for which all edges are either LS or NT. O

Theorem[3 LetY be an acyclicity property ensuring the halting
of some chase variar. Then theC-chase halts for any set of rules
R that satisfies”” (hencey”).

We will first formalize the notion of @orrect position graph (this
notion being not precisely defined in the core paper). Thenywill
prove thatPGF, PGP and PGY are correct, which will allow to
prove the theorem.

Lemma 2 If there is an edge fromiR;, ;) to (R;, 7;) thatis either
LS or NT in the support graph &f, thenR; depends orR;.

Proof: Assume there is a LS edge frof®;, ;) to (R;, ;) in the
support graph. Then the application Bf according tor; on F;_1
producesF; on which all atoms required to map; are present (or
it would not have been a last support). Since it is a suppoetgetis

o o also an atom required to mdp; that appeared i;_;. It follows
Preliminary definitions Let I be a fact an®R be a set of rules. An that R, depends upoi;.

R-derivation(sequence) (froni” to Fy) is a finite sequencero = Suppose now that the edge is NT. Consifiersuch that there is a
F), (By,m, F), ..., (Ri, m, Fi) such that for allo < i < k, | 5 edge from(Ry, ) to (R;, ;). See that there is no path in the
Ri € R andm; is @ homomorphism frorhody( 1:) to Fi—1 suchthat  gnnort graph frongR;, ;) to (R, i) (otherwise there a would be
Fi = o(Fi—1, s, m:). When only the successive facts are needed.y path from(R;, ;) to (R;, 7;) and the edge would be a transitive
we note(Fo = F), Fi,..., F. _ o edge). In the same way, there is @asuch that there is a path from
LetS = (Fo = F),. <o B be a breadth-firskR-derivation .from (Ri,m;) to (R;, ;) that goes througliR,, ,) (or the edge from
F.[1 Let h be an atom in the head dt: andb be an atom in the (Ri,m;) to (R;, ;) would be transitive). Thus, we can consider the
b?g}/e of R;. We say that(h, ;) is asupportof (b,m;) (in S) if  giomsetr,, ; that would have been created by the following deriva-
5 7°(h) = m;(b). We also say that an atoth € Fp is asup-  gn sequence:
port of (b,m;) if m;(b) = f. In that case, we notéf, init) is a
support of(b, ;). Among all possible supports fdb, 7;), itsfirst o first apply from £, all rule applications of the initial sequence

supportsare the(h, ;) such thati is minimal orm; = init. Note until (Ri—1,mi—1);
that (b, 7;) can have two distinct first support, 7;) and (h', i) o then apply all possible rule applications of this sequerficen
when the body of?; contains two distinct atomis and’ such that i+ 1 until k.

m%7¢(h) = w7°7¢(h'). By extension, we say th&RR;, ;) is asup-
port of (R;,p;) in S when there exist an atofmin the head ofR; We can apply(R;, w;) on the atomsefy, ; thus obtained (since it
and an atond in the body ofR; such that(h, m;) is a first support  contains the atoms df;_;). Let us now consider the atoms&tob-
of (b, m;). In the same wayl is a support of R;, 7;) when there  tained after this rule application. We must now check tHaf, ;)
existsb in the body of?; such thatr; (b) € Fu. Among all possible  can be applied ofi: this stems from the fact that there is no support
supports for(R;, ;), its last supportis the suppor(R;, ;) such  path from(R;, ;) to (R;, ;). This last rule application relies upon
thats is maximal. an atom that is introduced by the application(ét;, 7;), thus R;
Thesupport graphof S hasn + 1 nodes,Fy and the(R;, ;). We depends orR;. 0

add an edge fronh = (R;, m;) to J = (R;, w;) whenI is a support
of J. Such an edge is calledast support edgéL_S edge) wherd is a Proposition 16 PGP is correct.
last support of/. An edge that is not LS is calletbn transitive(NT)
if it is not a transitivity edge. A path in which all edges arther LS Proof: If there is ah — b triggering derivation sequence, then (by
or NT is called ariggering path Lemmd1) we can exhibit a triggering path that corresponaspath

in the GRD (Lemma&l2). O
Definition 13 (Triggering derivation sequence) A h — b trigger-
ing derivation sequends a breadth-first derivation sequende = Proposition 17 PGV is correct.
Fy, ..., F, from F where(h, 1) is a first support ofb, 7).

Proof: Consider ah — b triggering derivation sequence =
Definition 14 (Correct position graph) Let R be a set of rules. A Fy, ..., F,. We noteH” = =, (B,) N mi*/(H,) the atoms of
position graph ofR is said to becorrectif, whenever there exists a F), that are introduced by the rule applicatioR, , 71 ) and are used
h — b triggering derivation sequencthe position graph contains a  for the rule applicatior(R,., 7). Note that this atomset” is not
transition from[h, ¢] to [b, 4] for all 1 < i < k, wherek is the arity ~ empty, since it contains at least the atom produced ftoow, con-
of the predicate oh andb. sider the set of term&” = termg HY') Ntermgm,,(B,) \ HY) that

— —— - separate the atoms &f” from the other atoms af,,(B,,).
7 A derivation is breadth-first if, given any fadt; in the sequence, all rule

: P - .
applications corresponding to homomorphismgtare performed before Now, we fﬁfs'der thiru“R = By {fr(t) |tis a va';';able
rule applications on subsequently derived facts that dacogespond to ~ Of 1 and7*’“(v) € T* } — Hi. Consider the atomset™ =
homomorphisms td";. F,_1 \ HP U{fr(t)| tis aterm ofT'"}.




Consider the mapping?! from the variables of the body d&p
to those of Fp, defined as follows: ifv is a variable ofB;, then
71 (v) m1(v), otherwisev is a variable in an “fr” atom and

Proof: The piece-unifier is entirely determined by the terms that ar
forced into the frontier by an “fr” atom. Hence, we need tosider at
most one path for each term hi. Moreover, each (directed) cycle in

7¥(v) = m.(v). This mapping is a homomorphism, thus we can the GRD (that is of length at mogR|) needs to be traversed at most

consider the atomsgt”’ = o(F”, R”, 7). This application pro-
duces a new application a®,, that mapsb to the atom produced
from h. Indeed, consider the mapping, from the variables of3,,
to those of*”’ defined as follows: if is a variable ofB3,, such that
Tn(t) € termg HP)\ TP, thenrE (t) = nF**7° ('), wheret is the
variable of H; that producedr,, (t), otherwiser), (t) = m, (). This

|termq H )| times, since going through such a cycle without creating
a new frontier variable cannot create any new unifier. Hemeeeed
to consider only paths of polynomial length. a

Proof: (of Theorem[%) One can guess a cycle RG(R) (or
PGY(R)) such that the property” is not satisfied by this cycle.

mapping is a homomorphism. This homomorphism is new since iFrom the previous property, each edge of the cycle has a @olyn

mapsb to «&*“**(h). Thus, there is a piece-unifier &, with the

head ofR” that unifiesh andb.

It remains now to prove that for each atofn(¢) in the body of
R there exists a triggering patR; = (R}, n}) = (Ri,m) to
(R}, ) = (Rn,my) in the support graph such that-(¢) appears
in the agglomerated rulg;* alongR;, ..., Rn_1.

Lett be a variable occuring in somfe- atom inR”. Suppose that

mial certificate, and checking if a given substitution isegg-unifier
can also be done in polynomial time. Siricas in co-NP, we have a
polynomial certificate that this cycle does not satisfyMembership
to co-NP follows.

The completeness part is proved by a simple reduction fram th
co-problem of rule dependency checking (which is thus a Pe-N
complete problem).

fr(t) does not appear in any agglomerated rule corresponding to a Let R1 andR» be two rules. We first define two fresh predicates

triggering pathP; between(Ry,m1) and (R,,m). Sincer(t) is
an existential variable generated by the applicatioiofand there

is no unifier on the GRD paths that correspond to these tiiigger
paths that unifyt, 7 (¢) may only occur in atoms that are not used
(even transitively) by R,,, 7,), i.e.m1(t) ¢ TT. Thereforet does
not appear in &r atom R, which leads to a contradiction.

ands of arity |vars(Bi)|, and two fresh predicatesandr of arity
|vars(H2)|.

We build Ry = p(&) — s(&), whereZ is a list of all variables
in By, and Rz = r(¥) — p(2),q(Z), wherez = (z,z,...,2),
wherez is a variable which does not appearffy, andZ is a list of
all variables inH,. We rewrite Ry into R} = (B1,s(Z) — Hi),

SinceR” and R4 = |J R have the same head and the frontier whereZ is a list of all variables inB1, and Rz into Ry = (B2 —

of R is a subset of the frontier d&@“ any unifier withR” is also a
unifier with R“. Thus, there is a unifier aR,, with R“ that unifies

h andb, and there are the corresponding correct transition edges ivariable (thus, it is notva”) iff R, depends ok, .

PGY.
O
Proof: (of TheoreniB)

Let us say that a transition edge from {] in Ry to [a/,7,] in
R is usefulif there is a factF', and a homomorphism, from B,
to F, such that there is a homomorphists from By to someF’
obtained from a derivation ofa(F, Ri, 1), R) and w5 ¢(a) =
m2(a’). Furthermore, we say that the application ®f usesedge
([a, 1.1’ 1]).

One can see that a useful edge exactly correspondsite-a b
triggering sequence where,[i] occurs ink and fa, i'] occurs inb. It
follows from the correctness d?GY and PG® that no useful edge
of PGFis removed.

Now, let Y be an acyclicity proposition ensuring the halting of
some chase variaidt. Assume there is a set of rul@sthat satisfies
Y'Y but notY'? and there ig such that the”-chase does not halt on
(F,R). Then, there is a rule application in this (infinite) derivat
that uses a transition eddgu, i],[a’, ]) belonging toY'” but not
YY. This is impossible because such an edge is useful. The sal
arguments hold for ? w.rt. Y. |

Theorem[4 LetY be an acyclicity property, an® be a set of
rules. If checking thaR is Y is in co-NP, then checking th& is
YP or YV is co-NP-complete.

We first state a preliminary proposition.

Proposition 18 If there is ah — b triggering derivation sequence

(with b € headR) andb € bodyR’)), then there exist a non-

empty set of path® = {P,..., P} from R in GRD(R) such that
> |Pi| < |R] x [termgheadR))| and a piece-unifier oB3’ with

1<i<k

the head of an agglomerated rule alofgthat unifiesh andb.

H,,r (%)), whereZ is a list of all variables irf{>. One can check that
R = {Ro, R}, R5, Rs} contains a cycle going through an existential
O

Proposition[d Let R, and R» be rules, and lej: be a unifier of
Bs with H;. If  is incompatible, then no application &f; can use
an atom inu(H1).

Proof: We first formalize the sentence “no application/y¥ can use
an atom inu(H: )" by the following sentence: “no applicatiorf of
R, can map an atora € B» to an atonb produced by a application
(R1, ) such that = ('), wherer and=’ are more specific than
1" (given two substitutions; andss, s1 is more specific thans if
there is a substitution such thats; = s o s3).

Consider the application d®; to a fact w.r.t. a homomorphism,
followed by an application aR> w.r.t. a homomorphism’, such that
for an atoma € Ba, 7'(a) = b = = (b'), wherer andn’ are more
specific thanu. Note that this implies thati(a) = p(b’). Assume
thatb contains a fresh variablg produced from an existential vari-
ablez of &’ in H;. Letz’ be the variable from such thatr’ (2') = z;.
Since the domain of’ is B., all atoms fromBs in which 2z’ occurs
at a given positiorp; are also mapped by’ to atoms containing

me

z; in the same positiop;. Sincez; is a fresh variable, these atoms
have been produced by sequences of rule applicationsngtirtim
(R1,m). Such a sequence of rule applications exists only if there is
a path inPGY from a position ofz in H; to p;; moreover, this
path cannot go through an existential position, otherwijseannot

be propagated. Hence,is necessarily compatible.

d

Proposition[d  If, for each each existential position [i], all com-
patible cycles for §,4] in PGY are self-blocking, then the stable
computation based on the skolem chase halts.

Proof: If a cycle is non-compatible or self-blocking, then no se-
guence of rule applications can use it (where "used” is ddfiae



in the proof of Theorerfil3). Hence, if all compatible cycles self-
blocking, all derivations obtained with skolemized NMEe&alppli-
cations are finite. Hence, the stable computation basedessktiiem

chase halts.
O
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