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Extending Acyclicity Notions for Existential Rules
(long version)

Jean-François Baget1 and Fabien Garreau2 and Marie-Laure Mugnier 3 and Swan Rocher3

This report contains a revised version (July 2014) of the paper that
will appear in the proceedings of ECAI 2014 and an appendix with
proofs that could not be included in the paper for space restriction
reasons.

Abstract. Existential rules have been proposed for representing on-
tological knowledge, specifically in the context of Ontology-Based
Query Answering. Entailment with existential rules is undecidable.
We focus in this paper on conditions that ensure the termination
of a breadth-first forward chaining algorithm known as the chase.
First, we propose a new tool that allows to extend existing acyclicity
conditions ensuring chase termination, while keeping goodcomplex-
ity properties. Second, we consider the extension to existential rules
with nonmonotonic negation under stable model semantics and fur-
ther extend acyclicity results obtained in the positive case.

1 INTRODUCTION

Ontology-Based Query Answering is a new paradigm in data man-
agement, which aims to exploit ontological knowledge when access-
ing data.Existential ruleshave been proposed for representing on-
tological knowledge, specifically in this context [8, 3]. These rules
allow to assert the existence of unknown individuals, an essential
feature in an open-domain perspective. They generalize lightweight
description logics, such as DL-Lite andEL [10, 1] and overcome
some of their limitations by allowing any predicate arity aswell as
cyclic structures.

In this paper, we focus on a breadth-first forward chaining algo-
rithm, known as thechasein the database literature [24]. The chase
was originally used in the context of very general database con-
straints, called tuple-generating dependencies, which have the same
logical form as existential rules [6].

Given a knowledge base composed of data and existential rules,
the chase triggers the rules and materializes performed inferences
in the data. The “saturated” data can then be queried like a classi-
cal database. This allows to benefit from optimizations implemented
in current data management systems. However, the chase is not en-
sured to terminate— which applies to any sound and complete mech-
anism, since entailment with existential rules is undecidable ([5, 11]
on tuple-generating dependencies). Various acyclicity notions ensur-
ing chase termination have been proposed in knowledge representa-
tion and database theory.
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Paper contributions. We generalize known acyclicity conditions,
first, for plain existential rules, second, for their extension to non-
monotonic negation with stable semantics.

1. Plain existential rules.Acyclicity conditions found in the liter-
ature can be classified into two main families: the first one constrains
the way existential variables are propagated during the chase, e.g.,
[15, 25, 18], and the second one constrains dependencies between
rules, i.e., the fact that a rule may lead to trigger another rule, e.g.,
[2, 14, 4, 12]. These conditions are based on different graphs, but all
of them can be seen as forbidding “dangerous” cycles in the consid-
ered graph. We define a new family of graphs that allows to unify
and strictly generalize these acyclicity notions, withoutincreasing
worst-case complexity.

2. Extension to nonmonotonic negation.Nonmonotonic negation
is a useful feature in ontology modeling. Nonmontonic extensions to
existential rules were recently considered in [8] with stratified nega-
tion, [17] with well-founded semantics and [23] with stablemodel
semantics. The latter paper focuses on cases where a unique finite
model exists; we consider the same rule framework, however with-
out enforcing a unique model. We further extend acyclicity results
obtained on positive rules by exploiting negative information as well.

The paper is organized according to these two issues.

2 PRELIMINARIES

An atomis of the formp(t1, . . . , tk) wherep is a predicate of arityk
and theti are terms, i.e., variables or constants. Anatomsetis a finite
set of atoms. IfF is an atom or an atomset, we denote byterms(F )
(resp.vars(F )) the set of terms (resp. variables) that occur inF . In
the examples illustrating the paper, all the terms are variables (de-
noted byx, y, z, etc.), unless otherwise specified. Given atomsets
A1 andA2, a homomorphismh from A1 to A2 is a substitution of
vars(A1) by terms(A2) such thath(A1) ⊆ A2.

An existential rule(and simply a rule hereafter) is of the formR =
∀~x∀~y(B → ∃~zH), whereB andH are conjunctions of atoms, with
vars(B) = ~x ∪ ~y, andvars(H) = ~x ∪ ~z. B andH are respectively
called thebodyand theheadof R. We also use the notationsbody(R)
for B andhead(R) for H . Variables~x, which appear in bothB and
H , are calledfrontier variables. Variables~z, which appear only in
H , are calledexistential variables. Hereafter, we omit quantifiers in
rules as there is no ambiguity. E.g.,p(x, y) → p(y, z) stands for
∀x∀y(p(x,y) → ∃z(p(y, z))).

An existential rule with an empty body is called afact. A fact
is thus an existentially closed conjunction of atoms. ABoolean
conjunctive query(BCQ) has the same form. Aknowledge base
K = (F,R) is composed of a finite set of facts (which is seen as
a single fact)F and a finite set of existential rulesR. The fundamen-
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tal problem associated with query answering, called BCQENTAIL -
MENT, is the following: given a knowledge base(F,R) and a BCQ
Q, is it true thatF,R |= Q, where|= denotes the standard logical
consequence? This problem is undecidable (which follows from the
undecidability of the implication problem on tuple-generating depen-
dencies [5, 11]).

In the following, we see conjunctions of atoms as atomsets. Arule
R : B → H is applicableto an atomsetF if there is a homomor-
phismπ fromB toF . Theapplication ofR toF w.r.t.π produces an
atomsetα(F,R, π) = F ∪ π(safe(H)), wheresafe(H) is obtained
from H by replacing existential variables with fresh variables (see
Example 1).

The chaseprocedure starts from the initial set of factsF and
performs rule applications in a breadth-first manner. Several chase
variants can be found in the literature, mainlyoblivious (or naive),
e.g., [7],skolem[25], restricted (or standard) [15], andcore chase
[14]. The oblivious chase performs all possible rule applications. The
skolem chaserelies on a skolemisation of the rules (notationsk): for
each ruleR, sk(R) is obtained fromR by replacing each occurrence
of an existential variabley with a functional termfR

y (~x), where~x is
the set of frontier variables inR. Then, the oblivious chase is run on
skolemized rules.

Example 1 (Oblivious / Skolem chase)Let R = p(x, y) →
p(x, z) and F = {p(a, b)}, where a and b are constants. The
oblivious chase does not halt: it appliesR according toh0 =
{(x, a), (y, b)}, hence addsp(a, z0); then, it appliesR again ac-
cording toh1 = {(x, a), (y, z0)}, and addsp(a, z1), and so on.
The skolem chase considers the rulep(x, y) → p(x, fR

z (x)); it adds
p(a, fR

y (a)) then halts.

Due to space restrictions, we do not detail on the other chasevari-
ants. Given a chase variantC, we callC-finite the class of set of
rulesR, such that theC-chase halts on(F,R) for any atomsetF .
It is well-known that oblivious-finite⊂ skolem-finite⊂ restricted-
finite ⊂ core-finite (see, e.g., [26]). WhenR belongs to aC-finite
class, BCQENTAILMENT can be solved, for anyF andQ, by run-
ning theC-chase on(F,R), which produces a saturated set of facts
F ∗, then checking ifF ∗ |= Q.

3 KNOWN ACYCLICITY NOTIONS

Acyclicity notions can be divided into two main families, each of
them relying on a different graph. The first family relies on agraph
encoding variable sharing betweenpositionsin predicates, while the
second one relies on a graph encodingdependenciesbetween rules,
i.e., the fact that a rule may lead to trigger another rule (oritself).

3.1 Position-based approach

In the position-based approach, dangerous cycles are thosepassing
through positions that may contain existential variables;intuitively,
such a cycle means that the creation of an existential variable in a
given position may lead to creating another existential variable in
the same position, hence an infinite number of existential variables.
Acyclicity is then defined by the absence of dangerous cycles. The
simplest acyclicity notion in this family is that ofweak-acyclicity
(wa) [15], which has been widely used in databases. It relies on a di-
rected graph whose nodes are the positions in predicates (wedenote
by (p, i) positioni in predicatep). Then, for each ruleR : B → H
and each frontier variablex in B occurring in position(p, i), edges

with origin (p, i) are built as follows: there is an edge from(p, i) to
each position ofx in H ; furthermore, for each existential variabley
in H occurring in position(q, j), there is a special edge from(p, i)
to (q, j). A set of rules is weakly-acyclic if its associated graph has
no cycle passing through a special edge (see Example 2).

Example 2 (Weak-acyclicity) Let R1 = h(x) → p(x, y) and
R2 = p(u, v), q(v) → h(v). The position graph of{R1, R2} con-
tains a special edge from(h, 1) to (p, 2) due toR1 and an edge from
(p, 2) to (h, 1) due toR2. Thus{R1, R2} is not wa.

Weak-acyclicity has been generalized, mainly by shifting the fo-
cus from positions to existential variables (joint-acyclicity (ja)[18])
or to positions in atoms instead of predicates (super-weak-acyclicity
(swa) [25]). Other related notions can be imported from logic pro-
gramming, e.g.,finite domain (fd)[9] and argument-restricted (ar)
[22]. See the first column in Figure 1, which shows the inclusions
between the corresponding classes of rules; all these inclusions are
known to be strict.

3.2 Rule dependency-based approach

In the second approach, the aim is to avoid cyclic triggeringof rules
[2, 14, 3, 4, 12]. We say that a ruleR2 dependson a ruleR1 if an
application ofR1 may lead to a new application ofR2: there exists
an atomsetF such thatR1 is applicable toF with homomorphismπ
andR2 is applicable toF ′ = α(F,R1, π) with homomorphismπ′,
which isnew(π′ is not a homomorphism toF ) anduseful(π′ can-
not be extended to a homomorphism fromH2 to F ′). This abstract
dependency relation can be computed with a unification operation
known as piece-unifier [3]. Piece-unification takes existential vari-
ables into account, hence is more complex than the usual unification
between atoms. Apiece-unifierof a rule bodyB2 with a rule head
H1 is a substitutionµ of vars(B′

2) ∪ vars(H ′
1), whereB′

2 ⊆ B2

andH ′
1 ⊆ H1, such that:(1) µ(B′

2) = µ(H ′
1), and(2) existential

variables inH ′
1 are not unified withseparatingvariables ofB′

2, i.e.,
variables that occur both inB′

2 and in(B2 \B
′
2); in other words, if a

variablex occuring inB′
2 is unified with an existential variabley in

H ′
1, then all atoms in whichx occur also belong toB′

2. It holds that
R2 depends onR1 iff there is a piece-unifier ofB2 with H1, satisfy-
ing some easily checked additional conditions (atom erasing [4] and
usefulness [19, 12]). Following Example 3 illustrates the difference
between piece-unification and classical unification.

Example 3 (Rule dependency)LetR1 andR2 from Example 2. Al-
though the atomsp(u, v) ∈ B2 and p(x, y) ∈ H1 are unifiable,
there is no piece-unifier ofB2 with H1. Indeed, the most general
unifierµ = {(u, x), (v, y)} (or, equivalently,{(x, u), (y, v)}), with
B′

2 = {p(u, v)} andH ′
1 = H1, is not a piece-unifier becausev is

unified with an existential variable, whereas it is a separating vari-
able ofB′

2 (thus,q(v) should be included inB′
2). It follows thatR2

does not depend onR1.

The graph of rule dependenciesof a set of rulesR, denoted
by GRD(R), is a directed graph with set of nodesR and an edge
(Ri, Rj) if Rj depends onRi. E.g., with the rules in Example 3, the
only edge is(R2, R1). When the GRD is acyclic (aGRD, [2]), any
derivation sequence is finite.

3.3 Combining both approches

Both approaches are incomparable: there may be a dangerous cycle
on positions but no cycle w.r.t. rule dependencies (Example2 and 3),



and there may be a cycle w.r.t. rule dependencies whereas rules have
no existential variables (e.g.,p(x, y) → p(y, x)). So far, attempts to
combine both notions only succeded to combine them in a “modular
way”, by considering the strongly connected components (s.c.c.) of
the GRD [2, 14]; briefly, if a chase variant stops on each subset of
rules associated with a s.c.c., then it stops on the whole setof rules.
In this paper, we propose an “integrated” way of combining both
approaches, which relies on a single graph. This allows to unify pre-
ceding results and to generalize them without increasing complexity.
The new acyclicity notions are those with a gray background in Fig-
ure 1.

Finally, let us mentionmodel-faithful acyclicity (mfa)[12], which
cannot be captured by our approach. Briefly, checkingmfa involves
running the skolem chase until termination or a cyclic functional term
is found. The price to pay is high complexity: checking if a set of
rules is model-faithful acyclic for any set of facts is 2EXPTIME-
complete. Checkingmodel-summarizing acyclicity (msa)[12], which
approximates mfa, remains EXPTIME-complete. In contrast,check-
ing position-based properties is in PTIME and checking aGRDis
co-NP-complete.

wa aGRD
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waU

waU+

fd

ar

ja

swa

msa
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arD
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msaD
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msaU
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arU+
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msaU+

mfa

P coNP

Exp

2-Exp

Figure 1. Relations between recognizable acyclicity properties. All inclu-
sions are strict and complete (i.e., if there is no path between two properties
then they are incomparable).

It remains to specify for which chase variants the above acyclicity
notions ensure termination. Sincemfa generalizes all properties in
Figure 1, and sets of rules satisfyingmfaare skolem-finite, all these
properties ensureC-finiteness, for any chase variantC at least as
strong as the skolem chase. We point out that the oblivious chase may
not stop onwa rules. Actually, the only acyclicity notion in Figure 1
that ensures the termination of the oblivious chase isaGRD, since all
other notions generalizewa.

4 EXTENDING ACYCLICITY NOTIONS

In this section, we combine rule dependency and propagationof exis-
tential variables into a single graph. W.l.o.g. we assume that distinct
rules do not share any variable. Given an atoma = p(t1, . . . , tk),
the ith position ina is denoted by [a, i], with pred([a, i]) = p and
term([a, i]) = ti. If A is an atomset such thata ∈ A, we say that
[a, i] is in A. If term([a, i]) is an existential (resp. frontier) variable,
[a, i] is called anexistential(resp.frontier) position. In the follow-
ing, we use “position graph” as a generic name to denote a graph
whose nodes are positions inatoms.

We first define the notion of a basic position graph, which takes
each rule in isolation. Then, by adding edges to this graph, we define
three position graphs with increasing expressivity, i.e.,allowing to
check termination for increasingly larger classes of rules.

Definition 1 ((Basic) Position Graph (PG)) Theposition graphof
a ruleR : B → H is the directed graphPG(R) defined as follows:

• there is a node for each [a, i] in B or in H ;
• for all frontier positions [b, i]∈ B and all [h, j]∈ H , there is an

edge from [b, i] to [h, j] if term([b, i]) = term([h, j]) or if [h, j]
is existential.

Given a set of rulesR, the basic position graphof R, denoted by
PG(R), is the disjoint union ofPG(Ri), for all Ri ∈ R.

An existential position [a, i] is said to beinfinite if there is an
atomsetF such that running the chase onF produces an unbounded
number of instantiations ofterm([a, i]). To detect infinite positions,
we encode how variables may be “propagated” among rules by
adding edges toPG(R), calledtransition edges, which go from po-
sitions in rule heads to positions in rule bodies. The set of transition
edges has to becorrect: if an existential position [a, i] is infinite,
there must be a cycle going through [a, i] in the graph.

We now define three position graphs by adding transition edges
to PG(R), namelyPGF (R), PGD(R) andPGU (R). All three
graphs have correct sets of edges. Intuitively,PGF (R) corresponds
to the case where all rules are supposed to depend on all rules;
its set of cycles is in bijection with the set of cycles in the predi-
cate position graph defining weak-acyclicity.PGD(R) encodes ac-
tual paths of rule dependencies. Finally,PGU (R) adds information
about the piece-unifiers themselves. This provides an accurate en-
coding of variable propagation from an atom position to another.

Definition 2 (PGX ) Let R be a set of rules. The three following
position graphs are obtained fromPG(R) by adding a (transition)
edge from eachkth position [h, k] in a rule headHi to eachkth

position [b, k] in a rule bodyBj , with thesame predicate, provided
that some condition is satisfied :

• full PG, denoted byPGF (R): no additional condition;
• dependency PG, denoted byPGD(R): if Rj depends directly or

indirectly onRi, i.e., if there is a path fromRi toRj in GRD(R);
• PG with unifiers, denoted byPGU (R): if there is a piece-unifier

µ of Bj with the head of an agglomerated ruleRj
i such that

µ(term([b, k])) = µ(term([h, k])), whereRj
i is formally defined

below (Definition 3).

An agglomerated rule associated with(Ri, Rj) gathers informa-
tion about selected piece-unifiers along (some) paths fromRi to
(some) predecessors ofRj .



h(x)

p(x, y)

p(x,y)

p(u, v)

p(u,v)

q(v)

h(v)

Figure 2. PGF (R) andPGD(R) from Example 4. Position [a, i] is rep-
resented by underlining the i-th term ina. Dashed edges do not belong to
PGD(R).

Definition 3 (Agglomerated Rule) GivenRi andRj rules fromR,
an agglomerated rule associated with(Ri, Rj) has the following
form:

Rj
i = Bi ∪t∈T⊆terms(Hi)

fr(t) → Hi

wherefr is a new unary predicate that does not appear inR, and
the atomsfr(t) are built as follows. LetP be a non-empty set of
paths fromRi to direct predecessors ofRj in GRD(R). Let P =
(R1, . . . , Rn) be a path inP . One can associate a ruleRP with P
by building a sequenceR1 = Rp

1 , . . . , R
p
n = RP such that∀1 ≤

l < n, there is a piece-unifierµl ofBl+1 with the head ofRp
l , where

the body ofRp
l+1 isBp

l ∪{fr(t) | t is a term ofHp
l unified inµl}, and

the head ofRp
l+1 is H1. Note that for alll, Hp

l = H1, however, for
l 6= 1, Rp

l may have less existential variables thanRl due to the
added atoms. The agglomerated ruleRj

i built from{RP |P ∈ P} is
Rj

i =
⋃

P∈P RP .

The following inclusions follow from the definitions:

Proposition 1 (Inclusions betweenPGX ) LetR be a set of rules.
PGU (R) ⊆ PGD(R) ⊆ PGF (R). Furthermore,PGD(R) =
PGF (R) if the transitive closure ofGRD(R) is a complete graph.

Example 4 (PGF andPGD) LetR = {R1, R2} from Example 2.
Figure 2 picturesPGF (R) andPGD(R). The dashed edges belong
toPGF (R) but not toPGD(R). Indeed,R2 does not depend onR1.
PGF (R) has a cycle whilePGD(R) has not.

Example 5 (PGD andPGU ) Let R = {R1, R2}, with R1 =
t(x, y) → p(z, y), q(y) and R2 = p(u, v), q(u) → t(v, w). In
Figure 3, the dashed edges belong toPGD(R) but not toPGU (R).
Indeed, the only piece-unifier ofB2 withH1 unifiesu andy. Hence,
the cycle inPGD(R) disappears inPGU (R).

t(x, y)

t(x,y)

p(z, y)

p(z,y)

q(y)

p(u, v)

p(u,v)

q(u)

t(v, w)

t(v,w)

Figure 3. PGD(R) andPGU (R) from Example 5. Dashed edges do not
belong toPGU (R).

We now study how acyclicity properties can be expressed on po-
sition graphs. The idea is to associate, with an acyclicity property, a
function that assigns to each position a subset of positionsreachable
from this position, according to some propagation constraints; then,
the property is fulfilled if no existential position can be reached from
itself. More precisely, amarking functionY assigns to each node
[a, i] in a position graphPGX , a subset of its (direct or indirect)
successors, called itsmarking. A marked cyclefor [a, i] (w.r.t.X and
Y ) is a cycleC in PGX such that [a, i]∈ C and for all [a′, i′]∈ C,
[a′, i′] belongs to the marking of [a, i]. Obviously, the less situations
there are in which the marking may “propagate” in a position graph,
the stronger the acyclicity property is.

Definition 4 (Acyclicity property) Let Y be a marking function
andPGX be a position graph. Theacyclicity propertyassociated
with Y in PGX , denoted byY X , is satisfied if there is no marked
cycle for an existential position inPGX . If Y X is satisfied, we also
say thatPGX(R) satisfiesY .

For instance, the marking function associated with weak-
acyclicity assigns to each node the set of its successors inPGF (R),
without any additional constraint. The next proposition states that
such marking functions can be defined for each class of rules be-
tweenwa andswa (first column in Figure 1), in such a way that the
associated acyclicity property inPGF characterizes this class.

Proposition 2 A set of rulesR is wa (resp.fd, ar, ja, swa) iff
PGF (R) satisfies the acyclicity property associated withwa- (resp.
fd-, ar-, ja-, swa-) marking.

As already mentioned, all these classes can be safely extended by
combining them with the GRD. To formalize this, we recall theno-
tionY < from [12]: given an acyclicity propertyY , a set of rulesR is
said to satisfyY < if each s.c.c. ofGRD(R) satisfiesY , except for
those composed of a single rule with no loop.4 WhetherR satisfies
Y < can be checked onPGD(R):

Proposition 3 LetR be a set of rules, andY be an acyclicity prop-
erty.R satisfiesY < iff PGD(R) satisfiesY , i.e.,Y < = Y D .

For the sake of brevity, ifY1 andY2 are two acyclicity properties,
we writeY1 ⊆ Y2 if any set of rules satisfyingY1 also satisfiesY2.
The following results are straightforward.

Proposition 4 Let Y1, Y2 be two acyclicity properties. IfY1 ⊆ Y2,
thenY D

1 ⊆ Y D
2 .

Proposition 5 LetY be an acyclicity property. IfaGRD * Y then
Y ⊂ Y D .

Hence, any class of rules satisfying a propertyY D strictly includes
bothaGRD and the class characterized byY ; (e.g., Figure 1, from
Column 1 to Column 2). More generally, strict inclusion in the first
column leads to strict inclusion in the second one:

Proposition 6 Let Y1, Y2 be two acyclicity properties such that
Y1 ⊂ Y2, wa ⊆ Y1 andY2 * Y D

1 . ThenY D
1 ⊂ Y D

2 .

The next theorem states thatPGU is strictly more powerful than
PGD; moreover, the “jump” fromY D to Y U is at least as large as
from Y to Y D .
4 This particular case is to coveraGRD, in which each s.c.c. is an isolated

node.



Theorem 1 LetY be an acyclicity property. IfY ⊂ Y D thenY D ⊂
Y U . Furthermore, there is an injective mapping from the sets ofrules
satisfyingY D but notY , to the sets of rules satisfyingY U but not
Y D.

Proof: AssumeY ⊂ Y D andR satisfiesY D but notY . R can be
rewritten intoR′ by applying the following steps. First, for each rule
Ri = Bi[~x, ~y] → Hi[~y, ~z] ∈ R, let Ri,1 = Bi[~x, ~y] → pi(~x, ~y)
wherepi is a fresh predicate; andRi,2 = pi(~x, ~y) → Hi[~y, ~z]. Then,
for each ruleRi,1, let R′

i,1 be the rule(B′
i,1 → Hi,1) with B′

i,1 =
Bi,1 ∪ {p′j,i(xj,i) : ∀Rj ∈ R}, wherep′j,i are fresh predicates and
xj,i fresh variables. Now, for each ruleRi,2, let R′

i,2 be the rule
(Bi,2 → H ′

i,2) with H ′
i,2 = Hi,2 ∪ {p′i,j(zi,j) : ∀Rj ∈ R}, where

zi,j are fresh existential variables. LetR′ =
⋃

Ri∈R

{R′
i,1, R

′
i,2}. This

construction ensures that eachR′
i,2 depends onR′

i,1, and eachR′
i,1

depends on eachR′
j,2, thus, there is atransitionedge from eachR′

i,1

to R′
i,2 and from eachR′

j,2 to eachR′
i,1. Hence,PGD(R′) con-

tains exactly one cycle for each cycle inPGF (R). Furthermore,
PGD(R′) contains at least one marked cycle w.r.t.Y , and thenR′

does not satisfyY D . Now, each cycle inPGU (R′) is also a cycle
in PGD(R), and, sincePGD(R) satisfiesY , PGU (R′) also does.
Hence,R′ does not belong toY D but toY U . �

We also check that strict inclusions in the second column in Fig-
ure 1 lead to strict inclusions in the third column.

Theorem 2 Let Y1 and Y2 be two acyclicity properties. IfY D
1 ⊂

Y D
2 thenY U

1 ⊂ Y U
2 .

Proof: LetR be a set of rules such thatR satisfiesY D
2 but does not

satisfyY D
1 . We rewriteR into R′ by applying the following steps.

For each pair of rulesRi, Rj ∈ R such that there is a dependency
path fromRi to Rj ,for each variablex in the frontier ofRj and
each variabley in the head ofRi, if x andy occur both in a given
predicate position, we add to the body ofRj a new atompi,j,x,y(x)
and to the head ofRi a new atompi,j,x,y(y), wherepi,j,x,y denotes
a fresh predicate. This construction allows each term from the head
of Ri to propagate to each term from the body ofRj , if they share
some predicate position inR. Thus, any cycle inPGD(R) is also in
PGU (R′), without any change in the behavior w.r.t. the acyclicity
properties. HenceR′ satisfiesY U

2 but does not satisfyY U
1 . �

The next result states thatY U is a sufficient condition for chase
termination:

Theorem 3 LetY be an acyclicity property ensuring the halting of
some chase variantC. Then, theC-chase halts for any set of rules
R that satisfiesY U (henceY D).

Example 6 Consider again the set of rulesR from Example 5.
Figure 3 pictures the associated position graphsPGD(R) and
PGU (R). R is not aGRD, nor wa, nor waD since PGD(R)
contains a (marked) cycle that goes through the existentialposi-
tion [t(v, w), 2]. However,R is obviouslywaU sincePGU (R) is
acyclic. Hence, the skolem chase and stronger chase variants halt
for R and any set of facts.

Finally, we remind that classes fromwa to swa can be recog-
nized in PTIME, and checkingaGRD is co-NP-complete. Hence,
as stated by the next result, the expressiveness gain is without in-
creasing worst-case complexity.

Theorem 4 (Complexity) Let Y be an acyclicity property, andR
be a set of rules. If checking thatR satisfiesY is in co-NP, then
checking thatR satisfiesY D or Y U is co-NP-complete.

5 FURTHER REFINEMENTS

In this section, we show how to further extendY U into Y U+

by
a finer analysis of marked cycles and unifiers. This extensioncan be
performed without increasing complexity. We define the notion of in-
compatiblesequence of unifiers, which ensures that a given sequence
of rule applications is impossible. Briefly, a marked cycle for which
all sequences of unifiers are incompatible can be ignored. Beside the
gain for positive rules, this refinement will allow one to take better
advantage of negation.

We first point out that the notion of piece-unifier is not appropriate
to our purpose. We have to relax it, as illustrated by the nextexample.
We callunifier, of a rule bodyB2 with a rule headH1, a substitution
µ of vars(B′

2)∪ vars(H ′
1), whereB′

2 ⊆ B2 andH ′
1 ⊆ H1, such that

µ(B′
2) = µ(H ′

1) (thus, it satisfies Condition(1) of a piece-unifier).

Example 7 LetR = {R1, R2, R3, R4} with:
R1 : p(x1, y1) → q(y1, z1)
R2 : q(x2, y2) → r(x2, y2)
R3 : r(x3, y3) ∧ s(x3, y3) → p(x3, y3)
R4 : q(x4, y4) → s(x4, y4)
There is a dependency cycle(R1, R2, R3, R1) and a corresponding
cycle inPGU . We want to know if such a sequence of rule applica-
tions is possible. We build the following new rule, which is acompo-
sition ofR1 andR2 (formally defined later):R1⋄µR2 : p(x1, y1) →
q(y1, z1) ∧ r(y1, z1)
There is no piece-unifier ofR3 with R1 ⋄µ R2, sincey3 would be a
separating variable mapped to the existential variablez1. This actu-
ally means thatR3 is not applicableright afterR1 ⋄µ R2. However,
the atom needed to applys(x3, y3) can be brought by a sequence of
rule applications(R1, R4). We thus relax the notion of piece-unifier
to take into account arbitrarily long sequences of rule applications.

Definition 5 (Compatible unifier) LetR1 andR2 be rules. A uni-
fier µ of B2 with H1 is compatibleif, for each position [a, i] in
B′

2, such thatµ(term([a, i])) is an existential variablez in H ′
1,

PGU (R) contains a path, from a position in whichz occurs, to
[a, i], that does not go through another existential position. Other-
wise,µ is incompatible.

Note that a piece-unifier is necessarily compatible.

Proposition 7 LetR1 andR2 be rules, and letµ be a unifier ofB2

with H1. If µ is incompatible, then no application ofR2 can use an
atom inµ(H1).

We define the rule corresponding to the composition ofR1 and
R2 according to a compatible unifier, then use this notion to define a
compatible sequence of unifiers.

Definition 6 (Unified rule, Compatible sequence of unifiers)
• LetR1 andR2 be rules such that there is a compatible unifierµ of
B2 with H1. The associatedunified ruleRµ = R1 ⋄µ R2 is defined
byHµ = µ(H1) ∪ µ(H2), andBµ = µ(B1) ∪ (µ(B2) \ µ(H1)).
• Let (R1, . . . , Rk+1) be a sequence of rules. A sequences =
(R1 µ1 R2 . . . µk Rk+1), where, for1 ≤ i ≤ k, µi is a unifier
of Bi+1 with Hi, is a compatible sequenceof unifiers if: (1) µ1 is
a compatible unifier ofB2 with H1, and (2) if k > 0, the sequence
obtained froms by replacing(R1 µ1 R2) withR1 ⋄µ1

R2 is a com-
patiblesequence of unifiers.

E.g., in Example 7, the sequence(R1 µ1 R2 µ2 R3 µ3 R1), with
the obviousµi, is compatible. We can now improve all previous
acyclicity properties (see the fourth column in Figure 1).



Definition 7 (Compatible cycles) Let Y be an acyclicity property,
andPGU be a position graph with unifiers. Thecompatible cycles
for [a, i] in PGU are all marked cyclesC for [a, i] w.r.t. Y , such
that there is a compatible sequence of unifiers induced byC. Prop-
ertyY U+is satisfied if, for each existential position [a, i], there is no
compatible cycle for [a, i] in PGU .

Results similar to Theorem 1 and Theorem 2 are obtained forY U+

w.r.t.Y U , namely:

• For any acyclicity propertyY , Y U ⊂ Y U+.
• For any acyclicity propertiesY1 and Y2, if Y U

1 ⊂ Y U
2 , then

Y U+
1 ⊂ Y U+

2 .

Moreover, Theorem 3 can be extended toY U+

: let Y be an
acyclicity property ensuring the halting of some chase variantC; then

theC-chase halts for any set of rulesR that satisfiesY U+

(hence
Y U ). Finally, the complexity result from Theorem 4 still holdsfor
this improvement.

6 EXTENSION TO NONMONOTONIC
NEGATION

We now add nonmonotonic negation, which we denote bynot. A
nonmonotonic existential(NME) ruleR is of the form∀~x∀~y(B+ ∧
notB−

1 ∧ . . . ∧ notB−
k → ∃~zH), whereB+, B− = {B−

1 . . . B−
k }

andH are atomsets, respectively called thepositivebody, thenega-
tive body and the head ofR; furthermore,vars(B−) ⊆ vars(B+).
R is applicableto F if there is a homomorphismh from B+ to F
such thath(B−) ∩ F = ∅. In this section, we rely on a skolemiza-
tion of the knowledge base. Then, the application ofR to F w.r.t.h
producesh(sk(H)). R is self-blockingif B− ∩ (B+ ∪H) 6= ∅, i.e.,
R is never applicable.

Since skolemized NME rules can be seen as normal logic pro-
grams, we can rely on the standard definition of stable models[16],
which we omit here since it is not needed to understand the sequel.
Indeed, our acyclicity criteria essentially ensure that there is a finite
number of skolemized rule applications. Although the usualdefini-
tion of stable models relies on grounding (i.e., instantiating) skolem-
ized rules, stable models of(F,R) can be computed by a skolem
chase-like procedure, as performed by Answer Set Programming
solvers that instantiate rules on the fly [21, 13].

We check that, when the skolem chase halts on the positive part
of NME rules (i.e., obtained by ignoring the negative body),the sta-
ble computation based on the skolem chase halts. We can thus rely
on preceding acyclicity conditions, which already generalize known
acyclicity conditions applicable to skolemized NME rules (for in-
stancefinite-domainandargument-restricted, which were defined for
normal logic programs). We can also extend them by exploiting nega-
tion.

First, we consider the natural extensions of a unified rule (Def. 6)
and of rule dependency: to defineRµ = R1 ⋄µ R2, we add that
B−

µ = µ(B−
1 ) ∪ µ(B−

2 ); besides,R2 depends onR1 if there is a
piece-unifierµ of H2 withB1 such thatR1⋄µR2 is not self-blocking;
if R1 ⋄µ R2 is self-blocking, we say thatµ is self-blocking. Note
that this extended dependency is equivalent to thepositive reliance
from [23]. In this latter paper, positive reliance is used todefine an
acyclicity condition: a set of NME rules is said to beR-acyclicif no
cycle of positive reliance involves a rule with an existential variable.
Consider nowPGD with extended dependency: then, R-acyclicity is

stronger than aGRD (since cycles are allowed on rules without exis-
tential variables) but weaker thanwaD (since all s.c.c. are necessarily
wa).

By considering extended dependency, we can extend the results
obtained withPGD andPGU (note that forPGU we only encode
non-self-blocking unifiers). We can further extendY U+ classes by
consideringself-blocking compatible sequencesof unifiers. LetC be
a compatible cycle for [a, i] in PGU , andCµ be the set of all compat-
ible sequences of unifiers induced byC. A sequenceµ1 . . . µk ∈ Cµ

is said to be self-blocking if the ruleR1 ⋄µ1
R2 . . . Rk ⋄µk

R1 is
self-blocking. When all sequences inCµ are self-blocking,C is said
to be self-blocking.

Example 8 Let R1 = q(x1),notp(x1) → r(x1, y1), R2 =
r(x2, y2) → s(x2, y2), R3 = s(x3, y3) → p(x3), q(y3).
PGU+({R1, R2, R3}) has a unique cycle, with a unique in-
duced compatible unifier sequence. The ruleR1 ⋄ R2 ⋄ R3 =
q(x1),notp(x1) → r(x1, y1), s(x1, y1), p(x1), q(y1) is self-
blocking, henceR1 ⋄ R2 ⋄ R3 ⋄ R1 also is. Thus, there is no “dan-
gerous” cycle.

Proposition 8 If, for each existential position [a, i], all compatible
cycles for [a, i] in PGU are self-blocking, then the stable computa-
tion based on the skolem chase halts.

Finally, we point out that these improvements do not increase
worst-case complexity of the acyclicity test.

7 CONCLUSION

We have proposed a tool that allows to unify and generalize most
existing acyclicity conditions for existential rules, without increasing
worst-case complexity. This tool can be further refined to deal with
nonmonotonic (skolemized) existential rules, which, to the best of
our knowledge, extends all known acyclicity conditions forthis kind
of rules.

Further work includes the implementation of the tool5 and exper-
iments on real-world ontologies, as well as the study of chase vari-
ants that would allow to process existential rules with stable negation
without skolemization.
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Appendix

Proposition 2 A set of rulesR is wa (resp.fd, ar, ja, swa) iff
PGF (R) satisfies the acyclicity property associated with thewa-
marking (resp.fd-, ar-, ja-, swa-marking).

To prove Proposition 2 we rely on some intermediary results.The
next proposition is immediate.

Proposition 9 For each edge(pi, qj) in the predicate position graph
of a set of rulesR, there is the following non-empty set of edges
in PGF (R): Epi,qj = {([a, i] ,[a′, j]) | pred([a, i]) = p and
pred([a′, j]) = q}.

Furthermore, these sets of edges form a partition of all edges in
PGF (R).

We now define marking functions, whose associated acyclicity
property corresponds towa, fd, ar, ja or swa when it is applied
onPGF (R). The following three conditions, defined for a marking
M([a, i]), make it easy to compare known acyclicity properties.

• (P1)Γ+([a, i]) ⊆ M([a, i]), 6

• (P2) for all [a′, i′]∈ M([a, i]) such that [a′, i′] occurs in some
rule head:Γ+([a′, i′]) ⊆ M([a, i]),

• (P3) for all variablev in a rule body, such that for all position
[a′, i′] with term([a′, i′]) = v, there is [a′′, i′]∈ M([a, i]) with
pred([a′, i′]) = pred([a′′, i′]) andterm([a′′, i′]) = v: Γ+(v) ⊆
M([a, i]), whereΓ+(v) is the union of allΓ+(p), wherep is an
atom position in whichv occurs.

(P1) ensures that the marking of a given node includes its succes-
sors ;(P2) ensures that the marking includes the successors of all
marked nodes from a rule head ; and(P3)ensures that for each fron-
tier variable of a rule such that all predicate positions where it occurs
are marked, the marking includes its successors.

Definition 8 (Weak-acyclicity marking) A marking M is a wa-
marking wrtX if for any [a, i]∈ PGX , M([a, i]) is the minimal
set such that:

• (P1)holds,
• for all [ a′, i′]∈ M([a, i]),Γ+([a′, i′]) ⊆ M([a, i])

Observation:The latter condition implies(P2) and(P3).

Proposition 10 A set of rulesR is wa iff PGF (R) satisfies the
acyclicity property associated with thewa-marking.

Proof: If R is notwa, then there is some cycle in the graph of pred-
icate positions going through aspecial edge. Let pi be the predicate
position where this edge ends, andz be the existential variable which
occurs inpi. Let M be thewa-marking of any existential position
[a, i] with pred([a, i]) = p andterm([a, i]) = z.

(P1) ensures that the successors of [a, i] are marked; then, the
propagation function will perform a classic breadth-first traversal of
the graph. By Proposition 9, to each cycle in the graph of predicate
positions ofR corresponds a set of cycles inPGF (R). Sincepi be-
longs to a cycle, [a, i] will obviously be marked by the propagation
function. Hence,PGF (R) does not satisy the associated acyclicity
property of thewa-marking.

Conversely, ifR is wa, there is no cycle going through aspecial
edgein the graph of predicate positions ofR. By Proposition 9, to

6 For any nodev, Γ+(v) denotes the set of (direct) successors ofv.



each cycle inPGF (R) corresponds a cycle in the graph of pred-
icate positions ofR, hence no cycle inPGF (R) goes through an
existential position. �

We do not recall here the original definitions offd, ar, ja, swa.
The reader is referred to the papers cited in Section 4 or to [12],
where these notions are reformulated with a common vocabulary.

Definition 9 (Finite domain marking) A marking M is a fd-
marking wrtX if for any [a, i]∈ PGX , M([a, i]) is the minimal
set such that:

• (P1)and(P3) hold,
• for all [ a′, i′]∈ M([a, i]),Γ+([a′, i′]) \ {[a, i]} ⊆ M([a, i]).

Observation:The latter condition implies(P2).

Proposition 11 A set of rulesR is fd iff PGF (R) satisfies the
acyclicity property associated with thefd-marking.

Proof: Let R be a set of rules that isfd, then for each existential
position pi there exists a position pj for each variable of the frontier
in the graph of predicate positions such that pj does not belong to a
cycle. GivenPGF (R) we can see that Condition(P3) ensures that
R is fd. �

Definition 10 (Argument restricted marking) A markingM is an
ar-marking wrtX if for any [a, i]∈ PGX , M([a, i]) is the minimal
set such that:

• (P1), (P2) and(P3) hold,
• for each existential position [a′, i′], Γ+([a′, i′]) ⊆ M([a, i]),

Observation:If M is anar-marking, then for all existential positions
[a, i],[a′, i′]∈ PGX , M([a, i]) = M([a′, i′]).

Proposition 12 A set of rulesR is ar iff PGF (R) satisfies the
acyclicity property associated with thear-marking.

Proof: LetR be a set of rules that isar, then there exists a ranking on
terms (i.e., arguments) such that for each rule the rank of anexisten-
tial variable needs to be stricly higher than the rank of eachfrontier
variable in the body and the rank of a frontier variable in thehead
has to be higher or equal to the rank of this frontier variablein the
body. The marking process is equivalent to the ranking, in fact each
time a node is marked, the rank of a term is incremented. If we have a
cyclic ar-marking, it means that there exists at least one term rank
that does not satisfy the property of argument-restricted.We can see
the marking process as a method to compute an argument ranking.
�

Definition 11 (Joint acyclicity marking) A marking M is a ja-
marking wrtX if for any [a, i]∈ PGX , M([a, i]) is the minimal
set such that(P1), (P2) and(P3) hold.

Proposition 13 A set of rulesR is ja iff PGF (R) satisfies the
acyclicity property associated with theja-marking.

Proof: The definition of theja propagation function is the same as
in [18]. Indeed the “Move” set of a position is defined in the same
way as the marking. Furthermore, by Proposition 9, for any predi-
cate positionpi in the graph of joint-acyclicity, there is a cycle go-
ing throughpi iff for any existential atom position [a, i] such that
pred([a, i]) = p, we have [a, i]∈ M([a, i]).

�

Definition 12 (Super-weak-acyclicity marking) A markingM is a
swa-marking wrtX if for any [a, i]∈ PGX , M([a, i]) is the mini-
mal set such that :

• (P1)and(P3)hold,
• for all [ a′, i′]∈ M([a, i]) occuring in a rule head,{[a′′, i′]∈

Γ+([a′, i′]) : a′ anda′′ unify} ⊆ M([a, i]).

Proposition 14 A set of rulesR is swa iff PGF (R) satisfies the
acyclicity property associated with theswa-marking.

Proof: In the original paper of [25], the definition ofswa was
slightly different from this marking, but it has been shown in [12],
that swa can be equivalently expressed by a “Move” set similar to
ja. As for theja-marking, the definition of theswa-marking corre-
sponds to the definition of its “Move” set. �

Proof of Proposition 2:Follows from Propositions 10, 11, 12, 13,
and 14.

Proposition 6 Let Y1 and Y2 be two acyclicity properties such
thatY1 ⊂ Y2, wa ⊆ Y1 andY2 * Y D

1 . ThenY D
1 ⊂ Y D

2 .
Proof: LetR be a set of rules such thatR satisfiesY2 and neitherY1

noraGRD. R can be rewritten intoR′ by replacing each ruleRi =
(Bi,Hi) ∈ R with a new ruleR′

i = (Bi ∪ {p(x)},Hi ∪ {p(x)})
wherep is a fresh predicate andx a fresh variable. Each rule can now
be unified with each rule, but the only created cycles are those which
contain only atomsp(x), hence none of those cycles go through exis-
tential positions. Sincewa ⊆ Y1 (and sowa ⊆ Y2), the added cycles
do not change the behavior ofR w.r.t.Y1 andY2. Hence,R′ is a set
of rules satisfyingY2 and notY1, and sinceGRD(R′) is a complete
graph,PGD(R′) = PGF (R′). We can conclude thatR′ satisfies
Y D
2 but notY D

1 . �

Theorem 1 Let Y be an acyclicity property. IfY ⊂ Y D then
Y D ⊂ Y U . Furthermore, there is an injective mapping from the sets
of rules satisfyingY D but notY , to the sets of rules satisfyingY U

but notY D .
Proof: (included in the paper) AssumeY ⊂ Y D andR satisfies
Y D but notY . R can be rewritten intoR′ by applying the follow-
ing steps. First, for each ruleRi = Bi[~x, ~y] → Hi[~y, ~z] ∈ R, let
Ri,1 = Bi[~x, ~y] → pi(~x, ~y) wherepi is a fresh predicate ; and
Ri,2 = pi(~x, ~y) → Hi[~y, ~z]. Then, for each ruleRi,1, let R′

i,1 be
the rule(B′

i,1 → Hi,1) with B′
i,1 = Bi,1 ∪{p′j,i(xj,i) : ∀Rj ∈ R},

wherep′j,i are fresh predicates andxj,i fresh variables. Now, for
each ruleRi,2 let R′

i,2 be the rule(Bi,2 → H ′
i,2) with H ′

i,2 =
Hi,2 ∪ {p′i,j(zi,j) : ∀Rj ∈ R}, wherezi,j are fresh existential vari-
ables. LetR′ =

⋃

Ri∈R

{R′
i,1, R

′
i,2}. This construction ensures that

eachR′
i,2 depends onR′

i,1, and eachR′
i,1 depends on eachR′

j,2,
thus, there is atransitionedge from eachR′

i,1 toR′
i,2 and from each

R′
j,2 to eachR′

i,1. Hence,PGD(R′) contains exactly one cycle for
each cycle inPGF (R). Furthermore,PGD(R′) contains at least
one marked cycle w.r.t.Y , and thenR′ is notY D. Now, each cycle
in PGU (R′) is also a cycle inPGD(R), and sincePGD(R) satis-
fiesY , PGU (R′) also does. Hence,R′ does not belong toY D but
to Y U . �

Theorem 2 LetY1 andY2 be two acyclicity properties. IfY D
1 ⊂

Y D
2 thenY U

1 ⊂ Y U
2 .

Proof: (included in the paper) Let R be a set of rules such that
R satisfiesY D

2 but does not satisfyY D
1 . We rewriteR into R′ by



applying the following steps. For each pair of rulesRi, Rj ∈ R such
thatRj depends onRi, for each variablex in the frontier ofRj and
each variabley in the head ofRi, if x andy occur both in a given
predicate position, we add to the body ofRj a new atompi,j,x,y(x)
and to the head ofRi a new atompi,j,x,y(y), wherepi,j,x,y denotes
a fresh predicate. This construction will allow each term from the
head ofRi to propagate to each term from the body ofRj , if they
shared some predicate position inR. Thus, any cycle inPGD(R)
is also inPGU (R′), without modifying behavior w.r.t. the acyclicity
properties. Hence,R′ satisfiesY U

2 but does not satisfyY U
1 . �

Theorem 3 LetY be an acyclicity property ensuring the halting
of some chase variantC. Then theC-chase halts for any set of rules
R that satisfiesY U (henceY D).

We will first formalize the notion of acorrectposition graph (this
notion being not precisely defined in the core paper). Then, we will
prove thatPGF , PGD andPGU are correct, which will allow to
prove the theorem.

Preliminary definitions LetF be a fact andR be a set of rules. An
R-derivation(sequence) (fromF to Fk) is a finite sequence(F0 =
F ), (R1, π1, F1), . . . , (Rk, πk, Fk) such that for all0 < i ≤ k,
Ri ∈ R andπi is a homomorphism frombody(Ri) toFi−1 such that
Fi = α(Fi−1, Ri, πi). When only the successive facts are needed,
we note(F0 = F ), F1, . . . , Fk.

Let S = (F0 = F ), . . . , Fn be a breadth-firstR-derivation from
F . 7 Let h be an atom in the head ofRi and b be an atom in the
body of Rj . We say that(h, πi) is a support of (b, πj) (in S) if
πsafe
i (h) = πj(b). We also say that an atomf ∈ F0 is a sup-

port of (b, πj) if πj(b) = f . In that case, we note(f, init) is a
support of(b, πj). Among all possible supports for(b, πj), its first
supportsare the(h, πi) such thati is minimal orπi = init. Note
that (b, πj) can have two distinct first supports(h, πi) and(h′, πi)
when the body ofRi contains two distinct atomsh andh′ such that
πsafe
i (h) = πsafe

i (h′). By extension, we say that(Ri, πi) is asup-
port of (Rj , pj) in S when there exist an atomh in the head ofRi

and an atomb in the body ofRj such that(h, πi) is a first support
of (b, πj). In the same way,F0 is a support of(Rj , πj) when there
existsb in the body ofRj such thatπj(b) ∈ F0. Among all possible
supports for(Rj , πj), its last supportis the support(Ri, πi) such
thati is maximal.

Thesupport graphof S hasn+1 nodes,F0 and the(Ri, πi). We
add an edge fromI = (Ri, πi) to J = (Rj , πj) whenI is a support
of J . Such an edge is called alast support edge(LS edge) whenI is a
last support ofJ . An edge that is not LS is callednon transitive(NT)
if it is not a transitivity edge. A path in which all edges are either LS
or NT is called atriggering path.

Definition 13 (Triggering derivation sequence) A h → b trigger-
ing derivation sequenceis a breadth-first derivation sequenceF =
F0, . . . , Fn fromF where(h, π1) is a first support of(b, πn).

Definition 14 (Correct position graph) Let R be a set of rules. A
position graph ofR is said to becorrectif, whenever there exists a
h → b triggering derivation sequence, the position graph contains a
transition from[h, i] to [b, i] for all 1 ≤ i ≤ k, wherek is the arity
of the predicate ofh andb.

7 A derivation is breadth-first if, given any factFi in the sequence, all rule
applications corresponding to homomorphisms toFi are performed before
rule applications on subsequently derived facts that do notcorrespond to
homomorphisms toFi.

Proposition 15 PGF is correct.

Proof: Follows from the above definitions. �

Lemma 1 If S is ah → b triggering derivation sequence, then there
is a triggering path from(R1, π1) to (Rn, πn) in the support graph
of S.

Proof: There is an edge from(R1, π1) to (Rn, πn) in the support
graph ofS. By removing transitivity edges, it remains a path from
(R1, π1) to (Rn, πn) for which all edges are either LS or NT. �

Lemma 2 If there is an edge from(Ri, πi) to (Rj , πj) that is either
LS or NT in the support graph ofS, thenRj depends onRi.

Proof: Assume there is a LS edge from(Ri, πi) to (Rj , πj) in the
support graph. Then the application ofRi according toπi on Fi−1

producesFi on which all atoms required to mapBj are present (or
it would not have been a last support). Since it is a support, there is
also an atom required to mapBj that appeared inFi−1. It follows
thatRj depends uponRi.

Suppose now that the edge is NT. ConsiderFk such that there is a
LS edge from(Rk, πk) to (Rj , πj). See that there is no path in the
support graph from(Ri, πi) to (Rk, πk) (otherwise there a would be
a path from(Ri, πi) to (Rj , πj) and the edge would be a transitive
edge). In the same way, there is noq such that there is a path from
(Ri, πi) to (Rj , πj) that goes through(Rq, πq) (or the edge from
(Ri, πi) to (Rj , πj) would be transitive). Thus, we can consider the
atomsetFk\i that would have been created by the following deriva-
tion sequence:

• first apply fromF0 all rule applications of the initial sequence
until (Ri−1, πi−1);

• then apply all possible rule applications of this sequence,from
i+ 1 until k.

We can apply(Ri, πi) on the atomsetFk\i thus obtained (since it
contains the atoms ofFi−1). Let us now consider the atomsetG ob-
tained after this rule application. We must now check that(Rj , πj)
can be applied onG: this stems from the fact that there is no support
path from(Ri, πi) to (Rj , πj). This last rule application relies upon
an atom that is introduced by the application of(Ri, πi), thusRj

depends onRi. �

Proposition 16 PGD is correct.

Proof: If there is ah → b triggering derivation sequence, then (by
Lemma 1) we can exhibit a triggering path that corresponds toa path
in the GRD (Lemma 2). �

Proposition 17 PGU is correct.

Proof: Consider ah → b triggering derivation sequenceF =
F0, . . . , Fn. We noteHP = πn(Bn) ∩ πsafe

1 (H1) the atoms of
Fn that are introduced by the rule application(R1, π1) and are used
for the rule application(Rn, πn). Note that this atomsetHP is not
empty, since it contains at least the atom produced fromh. Now, con-
sider the set of termsTP = terms(HP )∩ terms(πn(Bn)\H

P ) that
separate the atoms ofHP from the other atoms ofπn(Bn).

Now, we consider the ruleRP = B1 ∪ {fr(t) | t is a variable
of R1 andπsafe

1 (v) ∈ TP } → H1. Consider the atomsetFP =
Fn−1 \H

P ∪ {fr(t) | t is a term ofTP }.



Consider the mappingπP
1 from the variables of the body ofRP

to those ofFP , defined as follows: ifv is a variable ofB1, then
πP
1 (v) = π1(v), otherwisev is a variable in an “fr” atom and

πP
1 (v) = πn(v). This mapping is a homomorphism, thus we can

consider the atomsetFP ′
= α(FP , RP , πP

1 ). This application pro-
duces a new application ofRn that mapsb to the atom produced
from h. Indeed, consider the mappingπP

n from the variables ofBn

to those ofFP ′
defined as follows: ift is a variable ofBn such that

πn(t) ∈ terms(HP )\TP , thenπP
n (t) = πP

1
safe

(t′), wheret′ is the
variable ofH1 that producedπn(t), otherwiseπP

n (t) = πn(t). This
mapping is a homomorphism. This homomorphism is new since it

mapsb to πP
n

safe
(h). Thus, there is a piece-unifier ofBn with the

head ofRP that unifiesh andb.
It remains now to prove that for each atomfr(t) in the body of

RP there exists a triggering pathPi = (R′
1, π

′
1) = (R1, π1) to

(R′
k, π

′
k) = (Rn, πn) in the support graph such thatfr(t) appears

in the agglomerated ruleRA
i alongR1, . . . , Rn−1.

Let t be a variable occuring in somefr atom inRP . Suppose that
fr(t) does not appear in any agglomerated rule corresponding to a
triggering pathPi between(R1, π1) and (Rn, πn). Sinceπ1(t) is
an existential variable generated by the application ofR1, and there
is no unifier on the GRD paths that correspond to these triggering
paths that unifyt, π1(t) may only occur in atoms that are not used
(even transitively) by(Rn, πn), i.e.π1(t) /∈ TP . Therefore,t does
not appear in afr atomRP , which leads to a contradiction.

SinceRP andRA =
⋃

RA
i have the same head and the frontier

of RP is a subset of the frontier ofRA any unifier withRP is also a
unifier withRA. Thus, there is a unifier ofRn with RA that unifies
h andb, and there are the corresponding correct transition edges in
PGU .

�

Proof: (of Theorem 3)
Let us say that a transition edge from [a, i] in R1 to [a′, i,] in

R2 is usefulif there is a factF , and a homomorphismπ1 from B1

to F , such that there is a homomorphismπ2 from B2 to someF ′

obtained from a derivation of(α(F,R1, π1),R) andπsafe
1 (a) =

π2(a
′). Furthermore, we say that the application ofR2 usesedge

([a, i],[a′, i]).
One can see that a useful edge exactly corresponds to ah → b

triggering sequence where [a, i] occurs inh and [a, i′] occurs inb. It
follows from the correctness ofPGU andPGD that no useful edge
of PGF is removed.

Now, let Y be an acyclicity proposition ensuring the halting of
some chase variantC. Assume there is a set of rulesR that satisfies
Y U but notY D and there isF such that theC-chase does not halt on
(F,R). Then, there is a rule application in this (infinite) derivation
that uses a transition edge([a, i],[a′, i]) belonging toY D but not
Y U . This is impossible because such an edge is useful. The same
arguments hold forY D w.r.t.Y F . �

Theorem 4 Let Y be an acyclicity property, andR be a set of
rules. If checking thatR is Y is in co-NP, then checking thatR is
Y D or Y U is co-NP-complete.

We first state a preliminary proposition.

Proposition 18 If there is ah → b triggering derivation sequence
(with h ∈ head(R) and b ∈ body(R′)), then there exist a non-
empty set of pathsP = {P1, . . . , Pk} fromR in GRD(R) such that∑

1≤i≤k

|Pi| ≤ |R|× |terms(head(R))| and a piece-unifier ofB′ with

the head of an agglomerated rule alongP that unifiesh andb.

Proof: The piece-unifier is entirely determined by the terms that are
forced into the frontier by an “fr” atom. Hence, we need to consider at
most one path for each term inH . Moreover, each (directed) cycle in
the GRD (that is of length at most|R|) needs to be traversed at most
|terms(H)| times, since going through such a cycle without creating
a new frontier variable cannot create any new unifier. Hence,we need
to consider only paths of polynomial length. �

Proof: (of Theorem 4) One can guess a cycle inPGD(R) (or
PGU (R)) such that the propertyY is not satisfied by this cycle.
From the previous property, each edge of the cycle has a polyno-
mial certificate, and checking if a given substitution is a piece-unifier
can also be done in polynomial time. SinceY is in co-NP, we have a
polynomial certificate that this cycle does not satisfyY . Membership
to co-NP follows.

The completeness part is proved by a simple reduction from the
co-problem of rule dependency checking (which is thus a co-NP-
complete problem).

LetR1 andR2 be two rules. We first define two fresh predicatesp
ands of arity |vars(B1)|, and two fresh predicatesq andr of arity
|vars(H2)|.

We buildR0 = p(~x) → s(~x), where~x is a list of all variables
in B1, andR3 = r(~x) → p(~z), q(~x), where~z = (z, z, . . . , z),
wherez is a variable which does not appear inH2, and~x is a list of
all variables inH2. We rewriteR1 into R′

1 = (B1, s(~x) → H1),
where~x is a list of all variables inB1, andR2 into R′

2 = (B2 →
H2, r(~x)), where~x is a list of all variables inH2. One can check that
R = {R0, R

′
1, R

′
2, R3} contains a cycle going through an existential

variable (thus, it is notwaD) iff R2 depends onR1. �

Proposition 7 LetR1 andR2 be rules, and letµ be a unifier of
B2 withH1. If µ is incompatible, then no application ofR2 can use
an atom inµ(H1).
Proof: We first formalize the sentence “no application ofR2 can use
an atom inµ(H1)” by the following sentence: “no applicationπ′ of
R2 can map an atoma ∈ B2 to an atomb produced by a application
(R1, π) such thatb = π(b′), whereπ andπ′ are more specific than
µ” (given two substitutionss1 ands2, s1 is more specific thans2 if
there is a substitutions such thats1 = s ◦ s2).

Consider the application ofR1 to a fact w.r.t. a homomorphismπ,
followed by an application ofR2 w.r.t. a homomorphismπ′, such that
for an atoma ∈ B2, π′(a) = b = π(b′), whereπ andπ′ are more
specific thanµ. Note that this implies thatµ(a) = µ(b′). Assume
thatb contains a fresh variablezi produced from an existential vari-
ablez of b′ in H1. Letz′ be the variable froma such thatπ′(z′) = zi.
Since the domain ofπ′ is B2, all atoms fromB2 in which z′ occurs
at a given positionpj are also mapped byπ′ to atoms containing
zi in the same positionpj . Sincezi is a fresh variable, these atoms
have been produced by sequences of rule applications starting from
(R1, π). Such a sequence of rule applications exists only if there is
a path inPGU from a position ofz in H1 to pj ; moreover, this
path cannot go through an existential position, otherwisezi cannot
be propagated. Hence,µ is necessarily compatible.

�

Proposition 8 If, for each each existential position [a, i], all com-
patible cycles for [a, i] in PGU are self-blocking, then the stable
computation based on the skolem chase halts.
Proof: If a cycle is non-compatible or self-blocking, then no se-
quence of rule applications can use it (where ”used” is defined as



in the proof of Theorem 3). Hence, if all compatible cycles are self-
blocking, all derivations obtained with skolemized NME rule appli-
cations are finite. Hence, the stable computation based on the skolem
chase halts.

�
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