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We describe the results of the two methods we developed to calculate the stationary nonlinear
solutions in one-dimensional plasmonic slot waveguides made of a finite-thickness nonlinear dielectric
core surrounded by metal regions. These two methods are described in detail in the preceding article
[Walasik et al., submitted to PRA]. For symmetric waveguides, we provide the nonlinear dispersion
curves obtained using the two methods and compare them. We describe the well known low-order
modes and the higher-modes that were not described before. All the modes are classified into two
families: modes with and without nodes. We also compare nonlinear modes with nodes with the
linear modes in similar linear slot waveguides with a homogeneous core. We recover the symmetry
breaking Hopf bifurcation of the first symmetric nonlinear mode toward an asymmetric mode and
we show that one of the higher modes also exhibits a bifurcation. We study the behavior of the
bifurcation of the fundamental mode as a function of the permittivities of a metal and a nonlinear
core. We demonstrate that the bifurcation can be obtained at low power levels in structures with
optimized parameters. Moreover, we provide the dispersion curves for asymmetric nonlinear slot
waveguides. Finally, we give results concerning the stability of the fundamental symmetric mode
and the asymmetric mode that bifurcates from it using both theoretical argument and numerical
propagation simulations from two different full-vector methods. We investigate also the stability
properties of the first antisymmetric mode using our two numerical propagation methods.

PACS numbers: 42.65.Wi, 42.65.Tg, 42.65.Hw, 73.20.Mf

I. INTRODUCTION

Nonlinear slot waveguides (NSWs) are structures made
of a finite-size nonlinear dielectric layer sandwiched be-
tween two semi-infinite metal layers. They have been
studied in Refs. [1, 2] where it was shown that they al-
low for sub-wavelength confinement of light and phase
matching for the second-harmonic generation. More re-
cently, in the works of Rukhlenko et al. [3, 4], analyti-
cal formulas for the dispersion relations of these NSWs
were presented for symmetric and antisymmetric nonlin-
ear modes only. These dispersion relations were given us-
ing integral equations that have to be solved numerically.
The study of Davoyan et al. [5] showed, using the nu-
merical shooting method to solve Maxwell’s equation in
NSWs, that a symmetry breaking bifurcation that gener-
ates an asymmetric mode from the fundamental symmet-
ric mode occurs in NSWs. Such bifurcation phenomena
are well known in fully dielectric nonlinear structures [6–
13]. Recently, higher order modes were also reported
in NSWs [14]. Moreover, it was shown that plasmonic
coupling and symmetry breaking phenomena can be ob-
served in waveguides built of a linear dielectric core sand-
wiched by nonlinear metals [15, 16]. Nonlinear switching
was predicted in NSW-based structures using numerical
simulations [17].

∗ corresponding author: gilles.renversez@fresnel.fr

In the preceding article [18], we describe two models we
developed to study the stationary nonlinear solutions in
NSWs where the nonlinear core of the focusing Kerr type
was considered. The first model assumes that the non-
linear term depends only on the transverse component of
the electric field and that the nonlinear refractive index
change is small compared to the linear part of the refrac-
tive index. It allows us to describe analytically the field
profiles in the whole waveguide. It also provides a closed
analytical formula for the nonlinear dispersion relation.
This first model is called Jacobi elliptic function based
model (JEM). The second model takes into account the
full dependency of the Kerr nonlinear term on all electric
field components and no assumption is required on the
amplitude of the nonlinear term. The disadvantage of
this approach is the fact that the field profiles must be
computed numerically. This second model is called the
interface model (IM).

This article is organized in the following way. In Sec. II,
we describe the results obtained with our two models for
symmetric NSWs. They include a mode classification
taking into account the higher order modes we found
previously [14] and a detailed study of the field profile
transformation as a function of power. We also provide
a permittivity contrast study that allows us to decrease
by several orders of magnitude the bifurcation threshold
at which the first asymmetric mode appears. In Sec. III,
we provide the results concerning asymmetric NSWs in
which the mode degeneracy is lifted. Finally, in Sec. IV,
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using both theoretical arguments and numerical propa-
gation simulations from two different full-vector methods
we provide results on the stability of the main stationary
solutions obtained in symmetric NSWs.

II. RESULTS FOR SYMMETRIC WAVEGUIDES

A. Dispersion relations, field profiles and mode
classification

In this section, the dispersion relations obtained for
the symmetric NSW are presented. The field profiles
corresponding to each of the dispersion curves are de-
picted and allow us to classify the modes according to
their symmetry and the number of nodes in the magnetic
field profile.

Figure 1 presents dispersion relations for the sym-
metric NSW obtained using the JEM and the IM. The
parameters of the NSW studied are: ε1 = ε3 = −90
(gold), εl,2 = 3.462, α2 = 6.3 · 10−19 m2/V2 (hydro-
genated amorphous silicon) and d = 400 nm at a wave-
length λ = 1.55 µm. The geometry of the structure with
its parameters is shown in Fig. 2. The dispersion rela-
tions present the dependence of the effective index of the
mode β as a function of the power density in the waveg-
uide core Pc which is calculated in the following way:
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FIG. 1. Dispersion diagrams β(Pc) for the symmetric NSW
obtained using (a) the JEM and (b) the IM.

FIG. 2. Geometry of the plasmonic NSW with the parameters
of the structure.

Pc =

∫ d

0

Szdx, (1)

where Sz denotes the z-component of the Poynting vector
S = 1/2<e(E×H∗).

We observe a very good qualitative agreement between
the dispersion diagrams obtained using our two models.
The number and the character of the dispersion curves
is very similar in both cases. The qualitative agreement
between the results of the two models confirms their va-
lidity. Quantitatively speaking, the models agree in the
range of low power densities (below 109 W/m). Above
this value we observe quantitative differences in the re-
sults. The origin of the differences is explained by the
assumptions made in the JEM (low nonlinearity, only
Ex component of the electric field contributing to the
Kerr nonlinear effect) as described in Ref. [18]. In the
following, we will focus on the results obtained using the
more accurate IM.

The NSW supports numerous modes with various
properties. Firstly, we will discuss the mode classifica-
tion according to the symmetry of the mode. For the
low power region, the NSW studied here supports two
modes: a fundamental symmetric mode [blue curve la-
beled S0 in Fig. 1 and blue field profiles in Fig. 3] and a
low-power antisymmetric mode [red curve labeled AN0 in
Fig. 1 and red field profiles in Fig. 3]. At Pc ≈ 109 W/m
a symmetry breaking bifurcation occurs that gives birth
to an asymmetric mode [5] [green curve labeled AS1 in
Fig. 1 and green field profiles in Fig. 3]. This modes
and this type of behavior are known in nonlinear waveg-
uides [5–13, 15, 19]. The power density Pc of the modes
S0, AN0, and AS1 first increases with the increase of the
effective index β and decreases for β >∼ 4.75.

Our models allow us to find new, higher order modes
in NSWs. The higher order modes can be divided into
two families: node-less modes and modes with nodes.
Among the node-less modes we find higher order sym-
metric modes (SI and SII) from which asymmetric modes
bifurcate (AS2 and AS3, respectively). Their disper-
sion curves are labeled with the name of the mode in
Fig. 1 and their field profiles are presented in Figs. 4 and
5(e), (f). Higher order node-less modes resemble a sin-
gle soliton (SI and AS2) or two solitons (SII and AS3)
propagating in the NSW core.

All the dispersion curves of the asymmetric modes are
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FIG. 3. Profiles of magnetic field Hy(x) for the symmetric S0
mode (blue), antisymmetric AN0 mode (red), and the first-
order asymmetric AS1 mode (green). The subplots present
the transformation of the field profiles at the points corre-
sponding to the vertical lines labeled a-e indicated in Fig. 6.

doubly degenerate. This means that to one value of the
effective index (and the corresponding power density)
correspond two solutions localized on one of the two core
interfaces [compare green curves in Figs. 3(a) and (e) for
the AS1 mode, Figs. 4(a) and (e) for the AS2 mode and
the green and the gray profiles in Fig. 5(f)]

The higher order modes with nodes resemble the modes
of a linear slot waveguide with a higher refractive index
than the one used here (see Sec. II C). Only symmetric
(S1, S2, . . . ) and antisymmetric (AN1, AN2, . . . ) modes
with nodes exist. Their dispersion curves are presented in
Fig. 1 and their field profiles are shown in Figs. 5(a)–(d).
The dispersion curves of the modes with nodes start for
β = 1 and their effective index grows with the increase
of the power density Pc.

In Fig. 6, we present the dispersion relations obtained
using the IM in a different coordinate frame. This time
we use the total electric field intensity at x = 0 (the inter-
face between the NSW core and the metal cladding) E0

{see Eq. ([equation][28][]28) in Ref. [18]}. This quantity
is one of the input parameters of the IM. The disper-
sion diagrams β(E0) have a drastically different charac-
ter from the β(Pc) diagrams presented in Fig. 1. The
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FIG. 4. Profiles of magnetic field Hy(x) for the symmetric
SI mode (blue) and the second-order asymmetric AS2 mode
(green). The subplots present the transformation of the field
profiles at the points corresponding to the vertical lines la-
beled v-z indicated in Fig. 6. In each subplot the value of E0

{see Eq. ([equation][28][]28) in Ref. [18] for its definition} is
identical for both modes.

difference is caused by the fact that E0 is a local quan-
tity, whereas Pc is a global quantity, that results from
the integration over the core width. In the coordinates
of E0, the dispersion curves of the asymmetric modes are
not degenerate. In Fig. 6, we notice that for asymmet-
ric modes, to a given value of β correspond two values
of E0, that represent solutions localized on the left and
right interface of the waveguide core.

In Fig. 3, the comparison of the field profiles of the
three main modes is presented during their transforma-
tion along the dispersion curve associated to the increase
of E0. The field profiles of the S0 and AN0 modes do not
change qualitatively. On the contrary, the field profile
of the AS1 mode undergoes a qualitative transformation.
For low E0 values, this mode is highly asymmetric and
strongly localized on the right core interface x = d. With
the increase of E0 the asymmetric profile becomes more
symmetric, and at the point of bifurcation it perfectly
overlaps with the symmetric mode [see Fig. 3(c)]. For
E0 values above the bifurcation point, the mode becomes
asymmetric and it tends to localize on the left interface.

In Fig. 4 a similar transformation is shown for the SI
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and AS2 modes. Here, with the increase of E0, the peak
amplitude of the soliton Hpeak = Hy(x = d/2) first de-
creases (it is the lowest at the bifurcation) and then in-
creases, while side lobe peak amplitude Hlobe (located
at x = 0 and x = d) of the symmetric mode increases
monotonously with E0. The ratio Hpeak/Hlobe first de-
creases (up to the bifurcation) and then increases. In
case of the asymmetric mode AS2, with the increase of
E0 the soliton peak shifts from left to right. At the same
time the amplitude of the left (right) side lobe increases
(decreases). More results on the mode transformation,
including the results obtained using the JEM are pre-
sented in Ref. [20].
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FIG. 5. Typical magnetic field profiles Hy(x), obtained using
the IM, corresponding to different dispersion curves indicated
in Fig. 6. Abbreviations next to the subfigure labels indicate
the dispersion curve to which a given profile corresponds. The
color of the profile allows us to distinguish the mode symme-
try: symmetric (S — blue), antisymmetric (AN — red), and
asymmetric (AS — green). For asymmetric doubly degener-
ate mode AS3 the second profile is shown in gray.

B. Single interface limit

In Sec. [section][4][]IV in Ref. [18], describing the theo-
retical derivation of the models for NSWs, we mentioned
that in the limiting case, where the integration constants
c0 in Eqs. ([equation][8][]8) and ([equation][10][]10) or C0

in Eqs. ([equation][26][]26) and ([equation][33][]33) (all
equation numbers correspond to Ref. [18]) are equal to
zero, we recover the case of a single interface between
a metal and a nonlinear dielectric. Looking at the field
profiles of highly asymmetric modes AS1 [see Figs. 3(a),
(e)], we see that these modes are mostly localized at one
interface only. Therefore, they can be well approximated
by a solution of the single-interface problem.

In Fig. 7, we present the dispersion curves for the
NSW obtained using the JEM [β(H0)] {see Eq. ([equa-
tion][1][9]9a) in Ref. [18]} and the IM [β(E0)] (com-
pare with Fig. 6). Additionally to the antisymmetric
(red), symmetric (blue), and asymmetric (green) dis-
persion curves, black dispersion curves obtained using
single-interface models are presented. In the case of the
JEM, the single-interface approximation was obtained
using the ’field based model’ for configurations with semi-
infinite nonlinear medium described in Ref. [21]. This
model was used for a single interface between a metal
and a nonlinear dielectric with the same parameters as
our NSW. In case of the IM, the corresponding single-
interface approximation was obtained using the ’exact
model’ for configurations with a semi-infinite nonlinear
medium described in Ref. [21].

In Fig. 7, we see that both for the JEM and for the
IM, the single-interface dispersion curve always lays be-
tween the antisymmetric AN0 curve and the symmetric
S0 curve. For high values of E0, the asymmetric AS1
curve becomes very close to the black curve, but remains
slightly above it. The fact that the black curves over-
lap with the green AS1 curves confirms that the highly
asymmetric AS1 modes (for high effective index β) are
well approximated using the single-interface approach.

Now, instead of using the corresponding models for
configurations with a semi-infinite nonlinear medium, we
will use the formulas found in Sec. [section][4][]IV in
Ref. [18] that give us the analytical expressions for the
dispersion relations for the single-interface problem. In
the case of the JEM, the analytical formula for the dis-
persion relation of a single metal/nonlinear dielectric in-
terface problem is given by Eq. ([equation][42][]42) in
Ref. [18]. In this equation, as in the entire formula-
tion of the JEM, the primary parameter is the magnetic
field amplitude at the interface H0. Therefore, we are
able to show the dependency described by Eq. ([equa-
tion][42][]42) only in the coordinates where the effective
index is presented as a function of the magnetic field am-
plitude at the interface H0 [see yellow line in Fig. 7(a)].
We observe that the dispersion relations calculated us-
ing the field based model (balck curve) and the yellow
curve described by Eq. ([equation][42][]42) overlap per-
fectly. The single-interface dispersion curve, which cor-
responds to the limiting case c0 = 0 divides the dispersion
plot β(H0) into the regions corresponding to the node-
less family and the family with nodes as predicted in Sec-
tion [subsection][2][3]III B in Ref. [18] Above the c0 = 0
curve (for negative values of the integration constant c0),
only node-less solutions exist. Below the c0 = 0 curve
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in black. Additionally, the curves corresponding to the an-
alytical expression for the single-interface dispersion relation
{Eqs. ([equation][42][]42) and ([equation][46][]46) in Ref. [18]}
are shown in yellow.

(for c0 > 0), only solutions with nodes exist.
In case of the IM, the analytical formula for the dis-

persion relation for the single-interface problem is given
by Eq. ([equation][46][]46) in Ref. [18]. The effective in-
dex of the mode expressed as a function of the material
parameters of the structure and the total electric field
intensity at the interface E0. The curve described by
Eq. ([equation][46][]46) is plotted in yellow in Fig. 7(b)
and it overlaps well with the black curve obtained using
the exact model.

In case of the IM, the numerical results also show that
the dispersion curves are divided in two families: with
nodes and node-less. The regions of the dispersion dia-
gram corresponding to these two families are separated
by the curve described by the equation C0 = 0 (black
and yellow curves for the single-interface problem). In
the frame of the IM, we could not prove this property
analytically because the field plots in the IM are calcu-
lated numerically.

In Fig. 7, in the region of high effective indices, the dis-
persion curves of the AS1 mode overlap with the curves
obtained using single-interface approximations. This
confirms our hypothesis that highly asymmetric modes
AS1 can be approximated by solutions obtained using
the corresponding single-interface models.

C. Comparison with linear states

In Sec. II A, while discussing the field profiles of the
modes belonging to the family with nodes, we noticed
that they resemble higher-order modes of linear slot
waveguides with parameters similar to the NSW stud-
ied here. In this section, we will explain the origin of the
similarities between these nonlinear and linear modes.

In Fig. 8, we present the nonlinear dispersion diagram
obtained using the IM for our NSW. In this plot, the ef-
fective index of the mode β is presented as a function of
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the averaged nonlinear index modification in the waveg-
uide core 〈∆n〉:

〈∆n〉 =
1

d

∫ d

0

∆ndx =
1

d

∫ d

0

n
(2)
2 Idx, (2)

where the nonlinear parameter n
(2)
2 = α2/ε0cεl,2

In addition to this plot we present also a dispersion
relation (black curves in Fig. 8) of a linear slot waveguide
with a homogeneous and linear core and the following
parameters: ε1 = ε3 = −90, n = n0 + ∆nlin = 3.46 +
∆nlin and d = 400 nm. The parameters ε1, ε3 and n0 =√
εl,2 are identical to these in the case of the nonlinear

waveguide studied here.
We notice that this linear dispersion diagram is simi-

lar to the dispersion plot of the NSW. For the core with
index n = n0 only two modes are present and they are
the linear counterparts of the modes S0 and AN0. With
the increase of the core index n, the effective index of
these modes increases and they become closer to each
other. At ∆nlin ≈ 0.1, a higher-order linear mode ap-
pears that is a counterpart of the S1 mode. For ∆nlin ≈ 2
and ∆nlin ≈ 3.5, another two higher-order modes ap-
pear. They are the linear counterparts of the AN1 and S2
modes, respectively. The effective index of these modes
increases rapidly with the increase of ∆nlin. The only
modes not present in the linear dispersion curves are
the asymmetric modes AS1, AS2, . . . and the symmet-
ric node-less modes SI, SII, etc. The asymmetric modes
can not be observed in the linear case because nothing
breaks the symmetry in the symmetric linear slot waveg-
uide. The node-less symmetric modes are not supported
by the linear slot waveguide because they have purely
nonlinear solitonic character [see Figs. 4 and 5(e)].

The dispersion curves of the nonlinear modes AN0
and S0 overlap with the corresponding linear dispersion
curves only for small 〈∆n〉 values. The nonlinear modes
increase their effective indices β faster than the linear
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FIG. 9. A comparison of (a), (c) Hy(x) and (b), (d) Ez(x)
for the nonlinear modes S1 (blue curve) and AN1 (red curve)
and the normalized profiles of their linear counterparts (black
curves) at the common points of the black (for linear slot
waveguide) and blue or red (for NSW) dispersion curves in-
dicated by open circles in Fig. 8.

modes. In case of higher-order modes S1, AN1 and S2,
the dispersion curves of the linear modes lay below the
corresponding nonlinear modes. There is only one com-
mon point per mode for these curves (indicated by an
open circle in Fig. 8) and it turns out that at this point,
the index distribution induced by the nonlinear mode in
the nonlinear core is flat (data not shown).

Figure 9 present the comparison of the field profiles
Hy(x) and Ez(x) for nonlinear S1 and AN1 modes and
their linear counterparts, at the points where the index
distribution induced by the nonlinear mode in the non-
linear core is flat. We observe that the nonlinear profiles
overlap perfectly with the profiles of the linear modes nor-
malized to the same amplitude as the nonlinear modes.

The results presented here prove that the modes with
nodes found in the NSW are close to the modes of the
linear slot waveguide with similar opto-geometric param-
eters. We explain the similarities between these nonlin-
ear and linear modes using the self-coherent definition
of nonlinear modes. This definition was introduced by
Townes and co-workers in Ref. [22] and was used later in
other works (e.g., Ref. [23]). It defines a nonlinear mode
as a linear mode of a linear (graded refractive index)
waveguide that is induced by the light distribution of this
mode. According to this definition, there is no difference
between the nonlinear modes of the NSW for which the
nonlinear index modification has a flat distribution and
the linear modes of the waveguide with higher, uniformly
distributed refractive index of the linear core.
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FIG. 10. Average nonlinear index change at the appearance
of the asymmetric AS1 modes 〈∆n〉th as a function of the
absolute value of (a) the metal cladding permittivity of the
symmetric waveguide |ε1| = |ε3| and (b) the linear part of the
nonlinear core permittivity εl,2 All the other parameters of
the NSW are identical to these used in Sec. II A.

D. Permittivity contrast

In Ref. [14], we have studied the influence of the width
of the NSW core on the nonlinear dispersion for this
this structure. Here we will discuss the influence of the
permittivity contrast between the dielectric core and the
metal cladding on the nonlinear dispersion diagrams of
symmetric NSW.

First, we will discuss the influence of the metal
cladding permittivity on the nonlinear dispersion dia-
grams of NSW. We have studied the dispersion plots
for the NSWs with identical parameters as these used in
Sec. II A but with different values of the metal cladding
permittivity. We observe that the cladding with higher
permittivity (lower in absolute value) allows us to reduce
the 〈∆n〉 threshold values where the bifurcation of the
AS1 mode occurs. For metals with permittivity equal
to −40, the bifurcation occurs at 〈∆n〉 ≈ 0.02, which is 4
times lower than in the case of ε1 = ε3 = −90. For met-
als with permittivity equal to −20, the bifurcation occurs
at 〈∆n〉 ≈ 8 · 10−4, which corresponds to the reduction
of the bifurcation threshold by two orders of magnitude
with respect to the configuration with ε1 = ε3 = −90.
The dependency of the AS1 mode bifurcation threshold
〈∆n〉th on the metal cladding permittivity is illustrated
in Fig. 10(a). Looking at this plot, we conclude that with
the increase of the metal cladding permittivity (decrease
of its absolute value) the bifurcation threshold of the AS1
mode decreases. This decrease is slow in the range of high
index contrast between the metal and the nonlinear di-
electric permittivity. Although, for |ε1| = |ε3| close to εl,2
the decrease of the bifurcation threshold is more rapid.
Changing the metal permittivity from −20 to −15 al-
lows us to decrease the bifurcation threshold by almost
two order of magnitudes. For the metal cladding permit-
tivity ε1 = ε3 = −15 the bifurcation threshold is at the
level of 〈∆n〉 ≈ 10−5. This is four orders of magnitude
lower than for the ε1 = ε3 from the range [−400,−90],
for which the bifurcation occurs at 〈∆n〉 ≈ 0.1.

Next, we will study the influence of the change of the

core permittivity on the dispersion diagram of the sym-
metric NSW. We analyzed the plots of the dispersion
curves for the NSWs with different linear parts of the
core permittivity εl,2. All the other parameters are iden-
tical to these used in Sec. II A. The behavior of the bi-
furcation threshold expressed as the averaged nonlinear
index modification 〈∆n〉 is presented in Fig. 10(b). The
increase of the linear part of the core permittivity εl,2 is
accompanied by a monotonous decrease of the bifurcation
threshold. From Fig. 10(b) we notice that the increase of
εl,2 from 1 to 25 results in the decrease of the bifurcation
threshold by approximately three orders of magnitude.

It is interesting to remind that, in the case of changing
the permittivity contrast by varying the metal cladding
permittivity [see Fig. 10(a)], we observed a decrease of
the bifurcation threshold for the AS1 mode with the de-
crease of the permittivity contrast between the cladding
and the core permittivity. On the contrary, decreasing
the permittivity contrast by changing the core permit-
tivty, leads to the increase of the bifurcation threshold
[see Fig. 10(b)].

This phenomenon can be explained using the field pro-
files of the symmetric mode for different values of core
and metal permittivities. We observe that increasing
the permittivity of the core or increasing the permittiv-
ity of the metal (decreasing its absolute value) leads to
symmetric modes that are more localized on the waveg-
uide interfaces and look closer to separate plasmon on
both metal/dielectric interfaces. Because the overlap and
therefore the interaction between the two plasmons is
weaker, it is easier to break the symmetry of the mode.
This explains the decrease of the bifurcation threshold.
We conclude that changing the permittivity contrast by
varying the linear part of the nonlinear core permittiv-
ity, has opposite effect than changing the permittivity
contrast by varying the metal cladding permittivity.

III. RESULTS FOR ASYMMETRIC
STRUCTURES

In Sec. II, we have comprehensively discussed dis-
persion diagrams and mode profiles in symmetric NSW
structures. In this section, we will discuss the influence
of the NSW asymmetry on the dispersion curves. The
asymmetry is introduced by sandwiching the nonlinear
core by metals with different values of the permittivity
on both sides. Asymmetric NSW structures have not
been studied before in literature. Here we present the
analysis of these structures for the first time.

A. Dispersion relations

Figure 11 presents the nonlinear dispersion diagram
obtained using the IM for the structure with the following
parameters: core permittivity εl,2 = 3.462, the second-

order nonlinear refractive index n
(2)
2 = 2 · 10−17 m2/W,
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core with d = 400 nm, metal permittivities ε1 = −110,
ε3 = −90 at a free-space wavelength λ = 1.55 µm. These
parameters are identical to those for the structure studied
in Sec. II A except for the metal permittivities. Here the
permittivity of the left metal layer is decreased to −110
making the structure asymmetric.

FIG. 11. Dispersion diagram obtained using the IM for the
asymmetric structure with ε1 = −110 and ε3 = −90 (for the
scheme of the structure see Fig. 2). Blue curves correspond
to the modes for which sgn[Ex,0] = sgn[Ex,d] and red curves
correspond to the modes for which sgn[Ex,0] = − sgn[Ex,d]
{see Eq. ([equation][28][]28) in Ref. [18] for the notations}.
Compare this dispersion diagram for the asymmetric struc-
ture with the dispersion diagram for the symmetric structure
presented in Fig. 1(b).

FIG. 12. Dispersion curves β(E0) for the asymmetric struc-
ture with ε1 = −110 and ε3 = −90. Compare this dispersion
diagram for the asymmetric structure with the dispersion di-
agram for the symmetric structure presented in Fig. 6.

In the asymmetric structure only asymmetric modes
are present. However, in the dispersion diagram shown
in Fig. 11, we divide the modes in two groups: modes
that resemble the antisymmetric modes of the symmetric
structure for which sgn[Ex,0] = − sgn[Ex,d] (red curves
labeled AN-like) and modes that resemble the symmet-
ric or asymmetric modes of the symmetric structure for
which sgn[Ex,0] = sgn[Ex,d] (blue curves labeled S-like)
{see Eq. ([equation][28][]28) in Ref. [18] for the notations

of the electric field components}.
We compare the nonlinear dispersion curves for the

asymmetric structure presented in Fig. 11 with the dis-
persion curves obtained for the symmetric structure
shown in Fig. 1. We notice that the dispersion curves for
the symmetric and antisymmetric modes from the family
with nodes did not change much. The number of modes
and the character of their dispersion curves is conserved.
The main difference between the dispersion curves of the
asymmetric and symmetric structures can be observed
for the symmetric and asymmetric modes of the node-
less family. The asymmetry of the structure lifts the dou-
ble degeneracy of the asymmetric branch AS1 (see green
curve in Fig. 1). This branch splits into two branches (see
Fig. 11). One of them (the branch with lower effective
indices β) is a continuation of the symmetric-like funda-
mental mode (blue curve) that starts for small power den-
sity Pc levels. The second branch lays along the first one
but has slightly higher power levels (branch with higher β
values). The degeneracy of the higher-order asymmetric
modes is also lifted by the asymmetry of the structure.
These branches also split into two separate branches, sim-
ilar to the case of the AS1 mode. It is difficult to observe
this effect in Fig. 11, where the power density in the core
is used as abscissa (even enlarging the region of interest),
because the two dispersion curves into which the disper-
sion curve of the higher-order asymmetric mode splits lay
very close to each other. The degeneracy lift of the AS2
mode can be however observed from the dispersion curve
β(E0) presented in Fig. 12, where the effective index is
shown as a function of the field intensity at the left core
interface. In these coordinates the separation of the SI
and AS2 curves reflects the degeneracy lift of the AS2
mode.

B. Permittivity contrast study

To finish our discussion of the asymmetric NSW prop-
erties, we directly compare the dispersion diagrams β(Pc)
of the symmetric structure with these of the asymmetric
structures. In Fig. 13, the dispersion plot of the sym-
metric structure (ε1 = ε3 = −90, see Fig. 1) is com-
pared with the dispersion plot for the asymmetric struc-
ture (ε1 = −110, ε3 = −90, see Fig. 11). Only a vicinity
of the bifurcation point of the AS1 mode is presented.
We observe that, for low Pc values, the dispersion curves
of the two low-power modes are slightly modified due to
the waveguide asymmetry. For higher values of Pc, the
dispersion curve of the fundamental mode (upper blue
curve) exactly overlaps with the dispersion curve of the
asymmetric mode of the symmetric structure. This is
a consequence of the fact that the field profiles corre-
sponding to this upper blue curve are strongly localized
on the interface with the metal with higher value of the
permittivity. These profiles resemble the profiles of the
highly asymmetric modes of the symmetric structure [see
Fig. 3(a)]. Therefore, we are not surprised that these two
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dispersion curves overlap. The second curve that results
from the degeneracy lift of the asymmetric mode lays
above (in terms of Pc) the dispersion curve of the asym-
metric mode AS1 (green curve).

FIG. 13. Dispersion curves of the asymmetric NSW with ε1 =
−110, ε3 = −90 (blue curves) and the symmetric structure
ε1 = ε3 = −90 (green curves).

FIG. 14. Dispersion curves of the asymmetric NSWs with
ε1 = −70 and ε3 = −90 (blue curves), ε1 = −50 and ε3 = −90
(red curves), and the symmetric structure ε1 = ε3 = −90
(green curves).

In Fig. 14, we present a comparison of the dispersion
curves of the symmetric structure (ε1 = ε3 = −90, see
Fig. 1) and the asymmetric structures, where one of the
metal permittivity values is higher than in the case of
the symmetric structure. The dispersion curves of the
symmetric structure (green curves) are compared with
these of the asymmetric structures with ε1 = −70, ε3 =
−90 (blue curves), and ε1 = −50, ε3 = −90 (red curves).

In the case illustrated in Fig. 14, contrary to the one
presented in Fig. 13, it is the higher (in terms of Pc) of
the two curves that result from the lift of the degeneracy
that overlap with the dispersion curve of the asymmetric
modes of the symmetric structure. This higher curve cor-
responds to the modes that are localized on the interface
between the core and the metal with permittivity equal
to −90. For the structures studied in Fig. 14, ε = −90

is the lowest cladding permittivity. For that reason, the
dispersion curves corresponding to the mode localized on
the interface with metal with lower permittivity, overlap
with the dispersion curves of the symmetric structure.

Another effect that can be observed in Fig. 14, is that
with the increase of the structure asymmetry |ε1−ε3| the
separation of the two curves that appear as a result of the
degeneracy lift, increases, as expected. In the limiting
case ε1 → ε3, these two curves merge into one doubly
degenerate curve.

IV. STABILITY OF THE MAIN SOLUTIONS
FOR SYMMETRIC WAVEGUIDES

In the previous sections, we have studied the stationary
properties of plasmon–soliton waves using two different
modal approaches. From both theoretical and practical
points of view, the issue of the stability of these waves
arises. In several works, the general problem of the sta-
bility of nonlinear waves was studied [24–26]. Despite an
enormous interest in the properties of nonlinear waves
over the last decades, there in no universal condition on
their stability [19, 23]. In most of the cases, the stability
must be studied numerically for each of the cases sepa-
rately. Stability of nonlinear guided waves in fully dielec-
tric structures was studied numerically in Refs. [8, 10, 27–
33].

In structures made of metals and nonlinear dielectrics,
due to the presence of media with negative permittiv-
ity, the problem of stability of plasmon–solitons is dif-
ficult to study even numerically. Only in Refs. [34, 35]
the stability of plasmon–solitons was analyzed for the
single nonlinear dielectric/metal interface case, using nu-
merical algorithms (like finite-difference time-domain —
FDTD [36, 37]). The propagation of light in plasmonic
couplers was studied using Fourier methods based on
mode decomposition in linear [38] and nonlinear [39]
regimes. In this section, we study the stability of the
plasmon–soliton waves in symmetric NSWs using two
methodologies: (i) the topological criterion for funda-
mental modes of nonlinear waveguides derived in Ref. [23]
and (ii) two numerical full-vector methods (using COM-
SOL [40] and nonlinear FDTD implemented in meep [41,
42]).

A. Theoretical arguments

We use here the topological criterion presented in
Ref. [23] that is based on the linear stability analysis [43]
and the Vakhitov–Kolokolov criterion [44]. The stability
criterion presented in Ref. [23], is based only on the topol-
ogy of the nonlinear dispersion curves and the stability
of the modes can be read by analyzing β(Itot) diagrams

in which Itot ≡
∫ +∞
−∞ I(x)dx where I(x) is the intensity

density. The validity of this approach was confirmed in



10

I
tot

I
tot

n-1

possibly

stable

unstable

possibly

stable

unstable
n

n

n-1

(a) (b)

n

FIG. 15. Rules of assigning the stability of the modes for two
specific cases extracted from Fig. 2 in Ref. [23]: (a) the fold
bifurcation (open circle) and (b) the Hopf bifurcation (open
square). Thick lines indicate a doubly degenerate branch,
whereas thin lines indicate non-degenerate dispersion curves.

multiple settings dealing with purely dielectric structures
[10, 30–33]

First, we will recall the principle used to estimate
the stability of nonlinear modes using the criterion from
Ref. [23]. Then we will use it to analyze the stability of
some of the plasmon–solitons found in NSWs.

The stability criterion derived in Ref. [23] uses sev-
eral assumptions. It provides stability for the funda-
mental nonlinear modes in structures composed of ar-
bitrary nonlinear material distributed nonuniformly in
the transverse direction. The derivation of the stability
criterion from Ref. [23] is obtained in the weak guiding
approximation for which the electric field satisfies the
scalar wave equation. In our study of the TM polarized
waves, we consider the case in which it is the magnetic
field component that satisfies the scalar wave equation
[Eq. ([equation][5][]5) in Ref. [18]]. We are fully aware
of the fact that the metal/nonlinear dielectric structures
studied here, in which plasmon–soliton waves propagate,
do not fulfill the weak guiding approximation due to high
permittivity contrast between the metal and the nonlin-
ear dielectric. This means that interesting nonlinear ef-
fects will occur for quite high nonlinear permittivity mod-
ifications. In spite of this fact, we use here the criterion
from Ref. [23], because the dispersion diagrams obtained
for our structures have similar character to the dispersion
plots of the fully dielectric structures where the criterion
is applicable and because, as it will be shown below, two
different numerical propagation simulations of the full
vector nonlinear problem confirm at least partially the
theoretical predictions.

In Fig. 15, the rules that will be required here to deter-
mine the stability of the modes derived in Ref. [23] are
schematically shown. Consider the dispersion relation
presented in Fig. 16. It shows a zoom of a dispersion dia-
gram, using Itot as variable, for a region that contains the
dispersion curves of the main modes for the same struc-
ture as the one presented in Fig. 1. The stability of modes
changes only at the bifurcation points [23]. To determine
the stability, first we have to identify all the bifurcation
points on the dispersion diagram β(Itot). In Fig. 16,
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FIG. 16. Zoom on the region of the dispersion diagram with
the birth of the first order asymmetric mode. Bifurcation
points are marked with an open circle for fold bifurcation and
an open square for Hopf bifurcation. The numbers facilitat-
ing the stability analysis are assigned to the sections of the
dispersion curves according to the rules presented in Fig. 15.
Labels ’ps’ and ’u’ denote possibly stable and unstable modes,
respectively.

the bifurcation points are located at the points where
intensity Itot has its local minima or maxima (point indi-
cated by an open circle — so-called fold bifurcation [45])
or where another branch appears [point indicated by an
open square — so called Hopf bifurcation associated with
the birth of a doubly degenerate branch (to a single point
on this branch correspond two asymmetric field profiles)].
Modes appear from or disappear at the points of bifurca-
tion. The next step is to label the sections between the
bifurcation points with numbers. The numbers are as-
signed in the following way. At first, we arbitrarily choose
one section and label it with any number (in Fig. 16 we
labeled the low intensity section of the symmetric dis-
persion curve with a number 0). The numbers of all the
other sections of dispersion curves are assigned using the
geometric rules given in Fig. 15.

Finally, after having numbered all the sections of the
dispersion curves, we can read the stability of the modes
directly from the β(Itot) dispersion curves. The topolog-
ical stability criterion presented in Ref. [23] tells us that
only the modes corresponding to the parts of the curves
with the largest number are possibly stable. In Fig. 16,
only the modes labeled by 0 are possibly stable (ps). All
the other modes are unstable (u). The stability of all the
possibly stable modes can be specified at once, as soon as
the stability of one of them is determined. The stability
can be determined either using numerical methods or the-
oretical arguments. The low-intensity section of the sym-
metric branch in the linear limit corresponds to a linear
plasmon in metal/insulator/metal (MIM) configurations,
which is stable. Therefore, the solutions corresponding
to this section of the nonlinear dispersion curves should
be stable. This hypothesis will be confirmed in Sec. IV B.

The high intensity section of the symmetric branch
(above the Hopf bifurcation) corresponds to unstable so-
lutions. On the contrary, the section of the asymmetric
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branch just above the Hopf bifurcation should correspond
to stable solutions, because the stability properties of the
sections with the same number are the same [23]. On the
asymmetric branch (at β ≈ 10) another bifurcation oc-
curs (fold type bifurcation indicated by an open circle).
The high effective index section of the asymmetric branch
(above the fold bifurcation point) is unstable.

B. Numerical simulations of nonlinear
propagations

In the previous section we provide some results about
the stability of the plasmon–solitons of the lowest orders
using the topological criterion derived in Ref. [23]. In
the NSWs studied here the weak guiding approximation,
used in the derivation of this topological criterion, is not
fulfilled. This fact makes the conclusions drawn using
the criterion not definitive. For this reason we also inves-
tigate the stability by full-vector numerical simulations.

First, we have used the capabilities of the FDTD
method [36, 37] implemented in the meep software [41,
42, 46]. The metal permittivity is described by a Drude
model to obtain the fixed negative value used at the
studied wavelength in the semi-analytical models we
developped. The useful computational domain is sur-
rounded at its four edges by absorber regions that pre-
vent back-reflected fields more efficiently than the per-
fectly matched layers that have also been tested during
our FDTD simulations. An example of the FDTD prop-
agation of the asymmetric plasmon–soliton is presented
in Fig. 17(a) through the evolution of the electric field
component Hy, where the sinusoidal phase modifications
are visible.

This result provides a confirmation of the stability of
the first asymmetric mode in the nonlinear slot waveg-
uides when the intensity is above a critical threshold. It
can be noticed in Fig. 17(a) that the plasmon–soliton
profile is not fully stationary. This is due to the fact
that the used current excitations in our FDTD simula-
tions do not generate perfectly the field profile of the

FIG. 17. Evolution of the Hy field profile of an asymmetric
plasmon–soliton for the stable case (a) with 〈∆n〉 = 0.0138
and for the unstable case (b) with 〈∆n〉 = 0.005. These simu-
lations are realized using the FDTD method implemented in
the meep software. The parameters are given in Fig. 19.

.

asymmetric plasmon–soliton. The used asymmetric ex-
citations contain components that weakly excite the an-
tisymmetric plasmon–soliton (which is studied later in
this section). When the excitations match perfectly with
the asymmetric mode profile the observed non-stationary
behaviour disappears as shown later when the simula-
tion results from the other used numerical method are
described. The main symmetric plasmon-soliton is easier
to excite in a simple way due to its symmetry property
as it can be seen in Fig. 18 where a stable and stationary
propagation is shown.

In order to obtain a more general view on the stabil-
ity of the main modes of the NSW in the frame of the
FDTD method, we systematically studied the propaga-
tion properties of the three main modes as a function
of the spatially averaged refractive index variation 〈∆n〉
[see Eq. (2)]: the first symmetric, asymmetric, and an-
tisymmetric modes. Typically, three cases occur in the
simulation results:

• Case 1: The mode is visible during the entire sim-
ulation duration. This case is, for example, the
one encountered for the asymmetric mode above a
given threshold 〈∆n〉 as it can be seen for example
in Fig. 17(a) or in Fig. 18.

• Case 2: The studied mode is generated at the be-
ginning of the temporal evolution but after some
times it does not propagate anymore in a self-
similar way. This case is the one encountered for
the main asymmetric mode below a given threshold
〈∆n〉 as shown for example in Fig. 17(b) where only
the most stable part of the propagation is shown.

• Case 3: The investigated mode is not generated
by the chosen current source (symmetric, antisym-
metric or asymmetric) used to excite it, even at the
beginning of the temporal evolution and in the sur-
rounding of the source. This behaviour is observed
for the asymmetric mode below the critical power
or critical 〈∆n〉 associated to the Hopf bifurcation.

It is one of the main advantages of the FDTD method to
be able to simulate temporal evolution even in the case
of unstable modes unlike the other method used later in
this section.

As it is shown in Fig. 19 obtained from the FDTD
simulations, we are able to build a dispersion diagram

FIG. 18. Evolution of the Hy field profile of a symmet-
ric plasmon–soliton for the stable case with 〈∆n〉 = 0.0018.
These simulations are realized using the FDTD method im-
plemented in the meep software. The parameters are given
in Fig. 19.
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for the first symmetric and asymmetric modes taking into
account their stability properties. The given β values for
unstable modes, corresponding to the case 2 in the above
paragraph, are the ones extracted from the simulations
results in the stable initial part of the evolution. It is
evident that for the case 3 above, no dispersion data are
obtained.

The stability properties of the asymmetric mode from
the FDTD simulations differ from the ones deduced from
the topological criterion given in the previous section for
the stationary case. The asymmetric mode is not stable
just above the bifurcation (see case 2 above) for some
range of 〈∆n〉 (see the thin green curve in Fig. 19), and
then it becomes stable when 〈∆n〉 increases (see the thick
green curve in Fig. 19). The instability of the asymmet-
ric mode just after the bifurcation has already been de-
scribed in the field of the spatial soliton studies [47, 48].
In our case, the instability can be observed in a relatively
extended range of intensity or equivalently of 〈∆n〉. This
extension of the instability could be due to the way the
asymmetric mode is excited in our FDTD simulations
and/or to the fact that the metal permittivity is disper-
sive due to the used Drude model.

It is worth noting that the FDTD dispersion curve for
the asymmetric mode differs at high 〈∆n〉 from the one
computed using the stationary IM: here the β values are
smaller and the FDTD curve stays concave while the sta-
tionary one is convex. Similar saturation effects in non-
linear full-vector temporal simulations have already been
described e.g., in Ref. [49]. From the FDTD implementa-
tion we use, we can not conclude about the stability prop-
erty at higher intensities than the ones shown in Fig. 19

3

3.5

4

4.5

5

0.0001 0.001 0.01

β

<∆n>

Asymmetric mode stable

Symmetric mode stable

Asymmetric mode
Symmetric mode

Symmetric linear mode

FIG. 19. Dispersion and stability results, obtained from
FDTD simulations, for the first symmetric and asymmetric
modes of the symmetric NSW. Thick curves denote a sta-
ble propagation while thin ones denote an unstable propa-
gation. The parameters are the following: core permittiv-
ity εl,2 = 3.462, the second-order nonlinear refractive in-

dex n
(2)
2 = 2 · 10−17 m2/W, core thickness d = 500 nm,

metal permittivities ε1 = ε3 = −6 at a free-space wavelength
λ = 1.0 µm.

due to the limitations of the nonlinear treatment used
(see reference [42]). Consequently, we can not check the
stability properties around or above the fold bifurcation
point described in Section IV A.

As it was expected from the previous section, the first
symmetric mode is stable at low 〈∆n〉 or equivalently at
low intensities (see the thick blue curve in Fig. 19).

Its stability is lost slightly before the birth and the
partial propagation of the asymmetric mode (see the thin
blue curve in Fig. 19). For all 〈∆n〉 values tested above
this transition region, the first symmetric mode is un-
stable. It is worth mentionning that the stability of this
symmetric mode is recovered numerically as soon as the
symmetry is forced in the FDTD simulations prohibiting
the appearance of asymmetric behaviour.

The topological criterion given in given in Ref. [23]
can not be applied to the first antisymmetric plasmon–
soliton mode because it is valid only for fundamental
modes. Therefore, the stability of this mode can only
be infered from numerical simulations. The first anti-
symmetric mode starts, in the low-intensity regime, from
the stable linear antisymmetric plasmon and there is no
bifurcations on its dispersion curve. Therefore, we ex-
pect this mode to be stable. An example of this stable
propagation is shown in Fig. 20. We observe no change
of the field profiles during the propagation (the antisym-
metric excitation used does not contain any symmetric
component).

In Fig. 21, the dispersion curve of the antisymmet-
ric plasmon–soliton is given together with its stability
property. The antisymmetric mode is stable up to the
maximum intensity that can be treated with the FDTD
implementation we use.

The stability properties of the three main plasmon–
soliton modes in nonlinear slot waveguides are also veri-
fied using the nonlinear propagation scheme implemented
in the lastest version of the RF module of COMSOL Mul-
tiphysics [40]. This approach was successfully used to
study the stability of solitons in lattices built of metals
and nonlinear dielectrics [50–52]. This method is limited
to the cases where the studied mode is stable since the
iterative numerical method used to compute the fields do
not converge in other cases.

According to the conclusions drawn from Fig. 16 in
Sec. IV A and from the FDTD simulations, the low-
power section of the symmetric branch corresponds to

FIG. 20. Evolution of the Hy field profile of a stable anti-
symmetric plasmon–soliton with 〈∆n〉 = 0.0225. These sim-
ulations are realized using the FDTD method implemented
in the meep software. The parameters are the same as in
Fig. 19.
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FIG. 21. Dispersion and stability results for the first antisym-
metric modes of the symmetric NSW obtained from FDTD
simulations. The thick curve denotes a stable propagation.
The parameters are the same as in Fig. 19.

FIG. 22. Evolution of the electric field norm during the
propagation of the symmetric mode located below the Hopf
bifurcation threshold. The average nonlinear index change
in the core induced by this mode is equal to 〈∆n〉 = 10−4

and the propagation distance is approximately 13 free-space
wavelengths. The parameters are the following: core per-
mittivity εl,2 = 3.462, the second-order nonlinear refractive

index n
(2)
2 = 2 · 10−17 m2/W, core thickness d = 400 nm,

metal permittivities ε1 = ε3 = −20 at a free-space wave-
length λ = 1.55 µm. These simulations are realized using the
COMSOL software.

stable solutions. This result is also confirmed by the
simulation presented in Fig. 22 obtained for a NSW
with d = 400 nm. No stable symmetric solution was
found above the 〈∆n〉 transition region using the method
implemented in COMSOL confirming the FDTD re-
sults already obtained. The stability of the asymmetric
branch above the bifurcation region observed in Fig. 19
is confirmed by these numerical simulations as shown in
Fig. 23. Figure 24 presents the evolution of the Ex elec-
tric field component for the asymmetric solutions in such
a case.

Figure 25 shows the transverse profiles of the symmet-
ric and asymmetric plasmons–solitons in the NSW. For
each symmetry type, we compare the profiles obtained
using the interface model (these profiles are used as input

FIG. 23. Evolution of the electric field norm during the prop-
agation of asymmetric modes located between the Hopf bifur-
cation and the fold bifurcation. The average nonlinear index
change in the core 〈∆n〉 induced by these modes is equal to
(a) 2 · 10−3, (b) 3 · 10−3, and (c) 4 · 10−3. The shown prop-
agation distance is approximately 12 free-space wavelengths.
The parameters are the same as in Fig. 22. These simulations
are realized using the COMSOL software.

-0.4

0.4

0.0

0.8

0 3 6 9

z [  m]

x
 [
  
m

]

FIG. 24. Evolution of the Ex field profile during the propa-
gation of the solution presented in Fig. 23(b) for a slot with
d = 400 nm. These simulations are realized using the COM-
SOL software. The shown propagation distance is approxi-
mately 6 free-space wavelengths.
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FIG. 25. Comparison of the |E| profiles obtained using the IM
(and used as the input profiles in the COMSOL based simula-
tions) and cuts of the field evolution in the middle of the prop-
agation range (z = 9 µm — 6 free-space wavelengths) and at
the end of the propagation (z = 18 µm — 12 free-space wave-
lengths) for (a) the symmetric nonlinear plasmon–soliton (see
Fig. 22) and (b) the asymmetric nonlinear plasmon–soliton
[see Fig. 23(b)].

in the COMSOL based propagation simulations) with the
cuts of the profiles presented in Figs. 22 and 23(b). These
comparisons validate the accuracy of the evolution simu-
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lations and consequently the results obtained concerning
the stability properties of the symmetric and asymmetric
modes in the NSW. One can notice that the stationary
behaviour is more clearly seen in the COMSOL based
simulations than in the FDTD ones. This is due to the
fact that in the former case we directly use as input the
profiles provided by the interface model while in the lat-
ter case we use excitation current sources to generate the
fields that mimick the stationary field profiles. Since we
are investigating nonlinear phenomena, it is not possible
to use in the FDTD simulations a part of a linear waveg-
uide to filter the needed profile as it is usually done in
FDTD based linear studies [36].

V. CONCLUSIONS

We have provided detailed results for the plasmon-
soliton waves in planar slot waveguides with a finite-
thicknees nonlinear dielectric core. In symmetric struc-
tures, using the semi-analytical models we developped
for stationary states, we haved investigated the proper-
ties of the first main modes and reported new higher or-
der modes including asymmetric ones that exist at high
intensities only. We have also described complete dis-
persion diagrams for these different modes as a function
of various quantities including the total power, the field
value at one interface between the metal and the non-
linear core, and also the spatial average of the nonlinear
refractive index change. We have proven that the total
intensity or equivalently the spatially averaged nonlinear
refractive index change corresponding to the Hopf bifur-
cation threshold from the first symmetric mode to the
first asymmetric mode can be reduced by several orders
of magnitude with an increase of the permittivity of the
core or of the metal cladding. We have also proven the
versatility of our semi-analytical models studying asym-
metric structures. For such structures, we have described
the impact of the metal permittivity contrast that lifts
the degeneracy of the doubly degenerated asymmetric
mode providing a more complex dispersion diagram than
the one of a symmetric structure.

Concerning, the stability of the main symmetric and
asymmetric modes, we have used an already derived
topological criterion established only in the weak guid-
ance approximation being fully aware that our structures
lay beyond its validity range. Nonetheless, as shown by

full-vector simulations, the topological criterion predicts
correctly the principal stability properties of the main
modes of the studied planar nonlinear slot waveguides.
Using this criterion, we have shown that the asymmetric
mode emerging through a Hopf bifurcation at a critical
intensity is stable between this bifurcation and a fold bi-
furcation located at higher intensity level. The stability
of this asymmetric mode is lost at this fold bifurcation.
On the contrary, the symmetric mode is unstable for all
intensity levels above the Hopf bifurcation while it is sta-
ble below.

Using two different full-vector numerical propagation
methods, we have studied the stability of the three main
modes: the symmetric, asymmetric, and antisymmetric
modes. We have shown that the asymmetric mode is
stable above a critical intensity slightly larger than the
threshold associated with the Hopf bifurcation computed
for the stationary states from our semi-analytical models
at least up to the maximum level of tested intensities.
The symmetric mode is shown to be unstable slightly
below and slightly above the Hopf bifurcation threshold,
and to be stable at lower intensities. For all tested in-
tensities, these results confirm qualitatively the results
derived from the topological criterion even if quantita-
tive differences exist. Finally, we have also proven nu-
merically that the anti-symmetric mode is stable in the
entire range of tested intensities.

These stability results together with those about the
decrease of the bifurcation threshold should facilitate the
design of specific structures in order to make possible the
experimental observation of these plasmon-soliton waves
more than thirty years after their theoretical discovery.
Future studies should be dedicated to the further reduc-
tion of the bifurcation threshold and to the study of more
sophisticated configurations.
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[39] J. Petráček, Appl. Phys. B 112, 593 (2013)
[40] “COMSOL,” http://www.comsol.com

[41] “Meep - Abinitio,” http://ab-initio.mit.edu/wiki/

index.php/Meep

[42] A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D.
Joannopoulos, and S. G. Johnson, Comput. Phys. Com-
mun. 181, 687 (2010)

[43] C. K. R. T. Jones and J. V. Moloney, Phys. Lett. A 117,
175 (1989)

[44] M. G. Vakhitov and A. A. Kolokolov, Radiophys. Quan-
tum Electron. 16, 783 (1973)

[45] J. M. T. Thompson and H. B. Stewart, Nonlinear dy-
namics and chaos, 2nd ed. (Wiley, New York, 2002)

[46] A. Rodriguez, M. Soljacic, J. D. Joannopoulos, and S. G.
Johnson, Opt. Express 15, 7303 (2007)

[47] M. Matuszewski, B. A. Malomed, and M. Trippenbach,
Phys. Rev. A 75, 063621 (2007)

[48] T. Mayteevarunyoo, B. A. Malomed, and G. Dong, Phys.
Rev. A 78, 053601 (2008)

[49] N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo,
Opt. Lett. 18, 411 (1993)

[50] Y. Kou, F. Ye, and X. Chen, Opt. Lett. 38, 1271 (2013)
[51] C. Huang, X. Shi, F. Ye, Y. V. Kartashov, X. Chen, and

L. Torner, Opt. Lett. 28, 2846 (2013)
[52] X. Shi, X. Chen, B. A. Malomed, N. C. Panoiu, and

F. Ye, Phys. Rev. B 89, 195428 (2014)

http://www.comsol.com
http://ab-initio.mit.edu/wiki/index.php/Meep
http://ab-initio.mit.edu/wiki/index.php/Meep
http://dx.doi.org/10.1103/PhysRevA.75.063621
http://dx.doi.org/10.1103/PhysRevA.78.053601
http://dx.doi.org/10.1103/PhysRevA.78.053601

	Plasmon–soliton waves in planar slot waveguides: II. Results for stationary waves and stability analysis
	Abstract
	I Introduction
	II Results for symmetric waveguides
	A Dispersion relations, field profiles and mode classification
	B Single interface limit
	C Comparison with linear states
	D Permittivity contrast

	III Results for asymmetric structures
	A Dispersion relations
	B Permittivity contrast study

	IV Stability of the main solutions for symmetric waveguides
	A Theoretical arguments
	B Numerical simulations of nonlinear propagations

	V Conclusions
	 Acknowledgments
	 References


