
HAL Id: hal-01303335
https://auf.hal.science/hal-01303335

Submitted on 6 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Epidemic risk from friendship network data: an
equivalence with a non-uniform sampling of contact

networks
Julie Fournet, Alain Barrat

To cite this version:
Julie Fournet, Alain Barrat. Epidemic risk from friendship network data: an equivalence with a non-
uniform sampling of contact networks . Scientific Reports, 2016, 6, pp.24593. �10.1038/srep24593�.
�hal-01303335�

https://auf.hal.science/hal-01303335
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1Scientific Reports | 6:24593 | DOI: 10.1038/srep24593

www.nature.com/scientificreports

Epidemic risk from friendship 
network data: an equivalence with 
a non-uniform sampling of contact 
networks
Julie Fournet1 & Alain Barrat1,2

Contacts between individuals play an important role in determining how infectious diseases spread. 
Various methods to gather data on such contacts co-exist, from surveys to wearable sensors. 
Comparisons of data obtained by different methods in the same context are however scarce, in 
particular with respect to their use in data-driven models of spreading processes. Here, we use a 
combined data set describing contacts registered by sensors and friendship relations in the same 
population to address this issue in a case study. We investigate if the use of the friendship network 
is equivalent to a sampling procedure performed on the sensor contact network with respect to the 
outcome of simulations of spreading processes: such an equivalence might indeed give hints on ways 
to compensate for the incompleteness of contact data deduced from surveys. We show that this is 
indeed the case for these data, for a specifically designed sampling procedure, in which respondents 
report their neighbors with a probability depending on their contact time. We study the impact of this 
specific sampling procedure on several data sets, discuss limitations of our approach and its possible 
applications in the use of data sets of various origins in data-driven simulations of epidemic processes.

Contact patterns between individuals, and in particular face-to-face interactions, play an essential role in deter-
mining how infectious diseases spread within a population. Information about these patterns is therefore crucial 
to inform epidemic models and ensure relevant predictions. Many efforts have been made to collect data about 
contacts between individuals using different techniques1–3. In particular, technological advances make it now 
possible to collect accurate data on face-to-face contacts with a high spatial and temporal resolution in various 
contexts, by using infrastructures based on wearable sensors3–10.

Such infrastructures are typically deployed in specific environments (schools, hospitals, etc.) and for limited 
time windows (typically few days or weeks). Moreover, even if their use has recently become more widespread, 
as costs have decreased and different groups have developed similar tools, they cannot always nor systematically 
be used in any context. Other types of data, such as surveys, diaries or online interactions, which have long been 
used in epidemiological contexts1,2, remain thus important sources that feed models of epidemic spread. Data 
on contacts between individuals coming from different types of sources are however not equivalent, as explored 
quantitatively in recent studies11,12. For instance, contact diaries lead to an underestimation of the number of 
actual contacts, as short contacts are not well reported, together with an overestimation of the duration of con-
tacts11,12. In this respect, friendship surveys, in which participants are asked to name their friends, might be less 
affected by memory biases; however, the precise relation between the network of friendships and the network of 
contacts is not straightforward, even in a given context, as friends might meet relatively rarely while many daily 
encounters occur between non-friends. For instance, ref. 11 reports on a high school context, where data was 
collected both on actual contacts between students of 9 classes using wearable sensors, and on their friendship 
relations through a survey. It was found that (i) the friendship survey suffered from low participation rate, (ii) the 
longest contacts corresponded to reported friendships and most friendship relations lead to actual face-to-face 
encounters, but (iii) many short contacts did not correspond to reported friendships, resulting in a friendship 
network with much lower density than the contact network.
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Here, we investigate further questions arising from this comparison. First, we assess how these differences 
between the two networks of interactions (reported friendships vs. measured contacts) lead to different outcomes 
if they are used as substrate for possible propagation events in numerical simulations of spreading processes. 
Indeed, although the longest contacts are reported in the friendship survey, the non-reported many short contacts 
can have an important role in propagation processes. Second, we ask if using the reported friendship network is 
equivalent, with respect to the outcome of such simulations, to a specific sampling of the contact network. Various 
sampling procedures are known to affect networks’ measured properties in different ways, and many works have 
studied for instance how average degree, degree distribution, clustering or assortativity properties depend on 
the procedure and on the sample size13–19. Fewer studies have investigated how the outcome of simulations of 
dynamical processes in data-driven models is affected if incomplete data are used20–23. As incomplete network 
data are in fact quite common, researchers have moreover tackled the issue of inferring network statistics24–27 
from incomplete data. Since many networks are the support of dynamical processes, it is also crucial to develop 
methods to obtain estimates of the outcome of such processes in the case of sampled data21,23. In this perspective, 
understanding if the differences in outcomes between contact and friendship data may be seen as biases due to 
a sampling process might then give hints on how to compensate for such biases and how to use the information 
contained in the friendship network to obtain accurate prediction on the epidemic risk, even in the absence of 
data on the actual contact network, in the spirit of ref. 23.

To make progresses in these directions, we rely here on the case study of a publicly available data set contain-
ing information on contacts measured by wearable sensors as well as friendship relations in the same population, 
namely high school students11. This is indeed to the best of our knowledge the only available data set combining 
contacts and friendship data in a given population. We first show how simulations of the spread of infectious 
diseases using friendship data lead to a strong underestimation of the epidemic risk with respect to using the 
contact network measured using wearable sensors, as can be expected due to the lower participation rate and the 
absence of many weak links in the friendship surveys. We then consider several sampling procedures on the con-
tact network and compare the outcome of simulations on the sampled networks and on the friendship network, 
for different values of the spreading parameters. Simple sampling methods such as uniform random sampling of 
nodes or edges do not reproduce the outcome of simulations using the friendship survey. We then put forward a 
non-uniform sampling method that favors sampling of the most important contacts of each sampled individual, 
and show that the outcome of spreading processes on the resulting sampled networks is equivalent to the one 
obtained when the friendship network is considered. Note that at this stage we do not use the friendship network 
to provide an estimate of the real epidemic risk in the contact network, but rather assess how using friendship 
data would be similar to a bias due to a specific sampling method on the real contact network. We finally apply the 
sampling method to several data sets and study how changing its parameters (number of nodes sampled, density 
of sampled network) impacts the outcome of spreading simulations.

Results
Data and methodology.  We consider data collected and made publicly available by the SocioPatterns col-
laboration, which describe two types of social interactions, namely face-to-face contacts and friendship relations, 
between the same individuals, namely students in a high school (see the SocioPatterns website http://www.socio-
patterns.org/). The contact network, measured using wearable sensors, has 327 nodes and 5818 weighted edges. 
Each edge (i¸j) with weight Wij corresponds to the fact that individuals i and j have been in contact for a total 
time Wij during the deployment, which lasted one week. The friendship network, obtained through a survey, has 
NF =  135 nodes and EF =  413 unweighted edges. All the nodes of the friendship network (but one) belong to the 
contact network. We also note that the population under study was structured in 9 classes (see Methods).

While Mastrandrea et al.11 performed a quantitative comparison of the contact and friendship networks, we 
are here interested in comparing the use of these networks within the context of models of propagation phenom-
ena. To this aim, we consider the paradigmatic Susceptible-Infectious-Recovered (SIR) model: in this model, a 
Susceptible (S) node i in contact with an Infectious one j can become Infectious (I). If the edge between i and j 
has weight Wij, the rate at which this event occurs is given by βWij/T where T is the total measurement time (see 
Methods and Stehlé et al.28 for details). Each Infectious node becomes Recovered (R) at rate μ and cannot be 
infected anymore. The process ends when there are no Infectious nodes any more. We perform numerical simula-
tions of this model on the contact network, on the friendship network and on networks obtained by sampling the 
contact network using several sampling methods (described in the next paragraph). To quantify the epidemic risk 
and compare outcomes of these simulations, we measure the distributions of epidemic sizes (i.e., the final fraction 
of recovered nodes), the fraction of epidemics with size larger than 20% and the average size of these epidemics 
(the cut-off of 20% is chosen arbitrarily to distinguish between small and large epidemics; changing the value of 
this threshold does not alter our results).

It is important to note that we consider here a static version of the contact network, while the data at hand 
provides temporally resolved contacts. The rationale behind this choice is twofold. First, the friendship survey 
data does not contain temporal information. If using friendship network can be seen as a sampling of contact 
networks, it is thus necessarily a static sample. Second, when modeling the propagation of infectious diseases with 
realistic timescales of several days, it has been shown in28 that a static weighted contact network contains enough 
information to obtain a good estimate of the process outcome. Clearly, when dealing with faster processes, the 
temporal evolution of the network becomes relevant; in that case, studies such as23 have shown how to build 
realistic surrogate timelines of contacts on weighted networks, using the robustness of the distributions of the 
durations of single contact events and of the intervals between successive contacts measured in different contexts.

Sampling methods.  Many different sampling procedures of network data have been considered in previous 
works, and their impact on the network’s statistical properties have been studied13–19. Sampling of the network 
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used as substrate for transmission events is also known to affect the result of simulations of epidemic spread20,21,23. 
In particular, population sampling has a strong impact, even in the case of uniform sampling23. We therefore con-
sider here the following sampling procedures on the contact network, tuned to obtain the same number of nodes 
as in the friendship network:

•	 We first consider as reference the Subgraph method (“SubFr”): we consider the 134 nodes of the Friendship 
network present in the contact network and take the subgraph induced by these nodes on the contact net-
work. This would correspond to a population sampling of the contact network, with the sampled population 
corresponding to the respondents of the friendship survey.

•	 In the Random Node method (“RN”), we choose NF =  135 nodes uniformly at random from the contact 
network and we take the subgraph induced by these nodes on the contact network. This corresponds to a 
population sampling with uniformly random choice of the sampled nodes.

•	 We also consider the Egocentric sampling method (“EGO”): we select a node at random and include this 
node and all its neighbors in the sample. We repeat this step until we reach the desired number of nodes, NF. 
If this number is exceeded by including the chosen node and its neighbors, we randomly choose a set of its 
neighbors so that the right number of nodes is exactly reached. Then, we take the subgraph induced by this 
sample of nodes on the original network.

As these methods do not allow us to control the number of edges in the sampled network, we also consider several 
additional sampling methods, in which we can tune this number and set it equal to EF.

•	 In the Random Edge method (“RE”), we first choose edges at random from the contact network until we reach 
the desired number of nodes NF; as the number of chosen edges is still lower than EF we then choose edges 
at random from the contact network with the condition that both their extremities are in the set of nodes 
obtained in the first step, until the desired number of edges is reached.

•	 In the Refined Random Node method (“RNref ”), we add the following step to the RN method: after the 
subgraph is obtained, we remove edges at random to get the desired number of edges in the final sampled 
network.

•	 We propose a new Refined Egocentric method (“EGOref ”), inspired by the result of ref. 11 that the longest 
contacts corresponded to reported friendships, while many short contacts did not. Here, we select N nodes 
called egos at random from the contact network. For each ego i we select some of its edges as follows: each edge 
(i,j) is selected with a probability equal to ⁎( )pmin , 1

W

S
ij

i
, with Wij the weight of the edge between i and j, 

= ∑




S Wi i  the strength of the ego node i and p is the parameter of the model. We then keep only the egos 
and the selected edges linking them and we remove the other edges (between egos and non-egos) and nodes 
(non-egos). With this method, we end up with the desired number of nodes by setting N =  NF, and a number 
of edges that depends on the parameter p. Figure 1 summarizes this process.

•	 While the egos are chosen uniformly at random among the nodes of the contact network in the EGOref 
method, we also consider a heterogenous EGOref method (“EGOref-het”), in which the distribution of egos 
in the various high school classes corresponds to the one of the friendship network (egos still being chosen at 
random within each class).

When using the sampled contact networks and the friendship network to simulate SIR processes, we more-
over assign to each sampled edge a weight taken at random from the empirical distribution of weights of the 
contact network, which is known to be a robust feature of human contact patterns3,29 (See also the Supplementary 
Information for more details about the assignment of weights to links).

Figure 1.  Sketch of the EGOref sampling process. We first select a certain number of nodes as egos (in green), 
who represent the respondents to the surveys. Links between non-respondents cannot be observed (dashed 
grey links in the second panel). Each ego then “chooses” to report some of its links, with probability depending 
on their weights (links shown in blue in the third panel, while the non-reported links are shown in dashed grey 
lines). We then finally keep only the egos and, among the chosen edges, only the ones joining egos (last panel).
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Properties of sampled networks and outcomes of SIR simulations.  Table 1 shows the character-
istics of the empirical contact and friendship networks compared to the networks obtained by the simplest sam-
pling techniques (SubFr, RN, EGO, RE). The contact network has 327 nodes, while the friendship and sampled 
networks have 135 nodes. The density is twice higher in the contact network than in the friendship network; 
however, the subgraph induced by the nodes of the friendship network (SubFr) has in fact a slightly higher density 
than the contact network. As the RN method samples uniformly the nodes of the contact network, the resulting 
density is on average equal to the density of the contact network. On the other hand, the density of the EGO 
sampled networks is even higher. Finally, RE sampling yields by construction the same density as the friendship 
network.

The clustering coefficient displays interesting features: despite a much lower density, the friendship network 
has a higher clustering coefficient than the contact network. Networks obtained through the SubFr, RN and EGO 
methods have as well rather large clustering coefficients, while the RE sampling yields much lower values.

Figure 2 shows the outcome of the spreading simulations performed on the two empirical networks and on 
sampled networks obtained by the RN, RE and EGO sampling methods: it displays the fraction of epidemics 
with size above 20% and the average size of epidemics among the ones with size above 20%, as a function of the 
spreading parameter β/μ. As expected, simulations using the friendship network give a very strong underestima-
tion of the epidemic risk with respect to the ones using the contact network. Moreover, simulations performed 
on the sampled networks RN and EGO yield a much larger estimation of the epidemic risk than when using the 
friendship network, and this estimation increases as the density of the network obtained by sampling increases 
(as is expected since the availability of transmission paths increases). Finally, simulations using the RE sampled 
networks also yield larger estimated epidemic sizes than when using the friendship network, although these net-
works have the same density. This is in agreement with the results of Smieszek et al.30 stating that high clustering 
values tend to hinder propagation processes, at fixed density: the clustering coefficient of the RE networks is 
indeed much smaller than the one of the friendship network.

We show in the Supplementary Information the results of simulations performed on the SubFr network as well 
as on a randomized version of the friendship network using the rewiring algorithm of Maslov et al.31 (MSZ). The 
SubFr network corresponds to a population sampling of the contact network, and leads to a limited underesti-
mation of the epidemic risk with respect to the whole contact network. The MSZ network has the same number 

Number of 
nodes

Number of 
edges Density

Average 
degree

Average 
clustering

Avg shortest 
path*

Contact network 327 5818 0.11 35.6 0.503 2.15

Friendship network 135 413 0.05 6.1 0.532 4.06

SubFr 134 1235 0.14 18.4 0.546 2.22

RN 135 987 0.11 14.6 0.498 2.37

EGO 135 1679 0.19 24.9 0.573 2.04

RE 135 413 0.05 6.1 0.157 3.19

Table 1.   Features of the empirical networks and of the networks obtained with the simplest sampling 
methods: SubFr, RN, EGO preserving the number of nodes and RE preserving both the number of nodes 
and edges of the friendship network. *The average shortest path length is computed on the largest connected 
component of the network.

Figure 2.  Outcome of SIR spreading simulations performed on empirical and sampled networks. (a) 
Fraction of epidemics with size above 20% (at least 20% of recovered individuals at the end of the SIR process) 
as a function of β/μ. (b) Average size of epidemic with size above 20% as a function of the parameter of 
spreading β/μ.
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of nodes and edges than the frienship network, hence the same density, but a much smaller clustering, due to the 
randomization, and gives thus a higher epidemic risk.

We now turn to the case of the EGOref sampling method. In the resulting sampled networks, the number of 
edges depends on the parameter p, at fixed number of sampled nodes NF. Figure 3 shows the average number of 
edges in the sampled network as a function of p. For p >  maxi,j(si/Wij), this number reaches the average number 
of edges in the subgraph induced by NF nodes chosen at random on the contact network, which is equal to the 
number of edges obtained through the RN sampling process. As our goal is to obtain a sampled subgraph of the 
contact network that is similar to the friendship network, we tune p in order to obtain sampled networks with an 
averaged number of edges close to EF =  413, the number of edges in the friendship network. This value is obtained 
for p ≈  31.3 (Fig. 3). At this value, the obtained network results always connected.

Table 2 compares the properties of the contact networks sampled by the RE, RNref and EGOref methods, in 
which we tune the number of edges, with the friendship network. Both average shortest path and clustering coef-
ficient are closest to the friendship network case for the EGOref method, but the clustering remains in all cases 
smaller in the sampled networks than in the friendship network. Further refinements of the EGOref method 
might yield a clustering closer to the one of the friendship network, at the cost however of an increase in the 
method’s complexity and number of parameters.

Figure 4 shows the outcomes of epidemic spreading simulations performed on the friendship network and on 
the contact networks sampled using the EGOref, RNref and RE methods. A very good agreement with the epi-
demic risk estimated from the friendship network is obtained for the EGOref sampling, while the RE and RNref 
sampled networks yield large epidemic sizes with higher probability and larger average epidemic sizes, even if 
they have the same density. As mentioned above, this could be expected given their smaller clustering.

Figure 5 displays the whole distributions of epidemic sizes for simulations performed on the friendship and 
EGOref networks, for 4 values of the spreading parameter β/μ. A good agreement in the shape of the distributions 
is observed, although the maximal size of epidemics is systematically higher in the EGOref sampled contact net-
works than in the friendship network, especially at large β/μ.

We finally consider the EGOref-het sampling method. In that case, the number of sampled nodes is equal 
to the number of nodes of the friendship network in each class. We fix the number of edges to 413 by the same 
method as in the EGOref case; this is obtained for p ≈  22. The resulting average shortest path length is 4.03 and 
the average clustering is 0.334, still smaller than in the friendship network and very close to the clustering in the 
EGOref sampled networks. We show in Figs 6 and 7 that the outcomes of the spreading simulations are similar to 
the EGOref case, with a slightly better agreement with the results of simulations using the friendship network, in 
particular for large epidemics.

Figure 3.  Average number of edges in the sampled network obtained by the EGOref method as a function 
of the parameter p with NF = 135. The horizontal red line represents the number of edges EF in the friendship 
network.

Number of 
nodes

Number of 
edges Density

Average 
degree

Average 
clustering

Avg shortest 
path*

Friendship network 135 413 0.05 6.1 0.532 4.06

RE 135 413 0.05 6.1 0.157 3.19

RNref 135 413 0.05 6.1 0.197 3.21

EGOref 135 413 0.05 6.1 0.355 3.90

Table 2.  Features of the friendship network and of the sampled networks obtained by RE, RNref and 
EGOref method, all of them preserving the number of nodes and edges of the friendship network. *The 
average shortest path length is computed on the largest connected component of the network.
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Sampling model exploration.  In this section, we investigate how simulations of spreading processes per-
formed on networks obtained from the contact network using the EGOref sampling method depend on the 
method’s parameters p and N. We consider 135 ≤  N ≤  327 and 15 ≤  p ≤  500 (as for p >  500 the number of links 
is almost equal to its maximum possible value). We first observe (not shown) that, at fixed N, the density of the 

Figure 4.  Outcome of SIR spreading simulations performed on friendship and sampled networks. (a) 
Fraction of epidemics with size above 20% (at least 20% of recovered individuals at the end of the SIR process) 
as a function of the parameter of spreading β/μ. (b) Average size of epidemic with size above 20% as a function 
of the spreading parameter β/μ.

Figure 5.  Distributions of epidemic sizes of SIR spreading simulations. We compare the outcomes of SIR 
spreading simulations performed on friendship and EGOref networks for different values of β/μ.
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sampled network is fully determined by the value of p. Changing p is thus equivalent to tuning the resulting net-
work’s density. For p =  500 and N =  327, we almost recover the whole contact network.

In Fig. 8, we show the average epidemic size obtained on the sampled networks as a function of p and N 
for different values of the spreading parameter β/μ: this size increases with both p and N. Increasing p (which 

Figure 6.  Outcome of SIR spreading simulations performed on friendship and both EGOref sampled 
networks. (a) Fraction of epidemics with size above 20% (at least 20% of recovered individuals at the end of the 
SIR process) as a function of the parameter of spreading β/μ. (b) Average size of epidemic with size above 20% 
as a function of the spreading parameter β/μ.

Figure 7.  Comparison of the distributions of epidemic sizes of SIR spreading simulations performed on 
friendship and heterogeneous EGOref sampled networks for different values of β/μ. 
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determines the link reporting probability) at fixed N (the number of survey participants) or the contrary is not 
enough to obtain a correct estimation of the epidemic risk: both have to be increased in order to obtain the same 
value as when using the whole contact network, shown by the continuous line. The dashed lines show the values 
of p and N necessary to obtain an estimation of the epidemic size within 5%, 10% or 20% of this reference value.

We also note that the average epidemic size obtained for the largest values of p and N is actually larger than the 
reference, although the corresponding EGOref network is structurally almost the same as the contact network. 
This discrepancy stems from the fact that the edge weights are placed differently in both cases: weights are indeed 
assigned at random on the edges of the network obtained by the EGOref sampling procedure. We show in the 
Supplementary Information that a weight reshuffling on the contact network leads indeed to an increase in the 
size of the simulated epidemics.

We moreover show in the Supplementary Information the impact of the EGOref sampling on the outcome 
of SIR simulations for two other data sets corresponding to contacts in a conference and in offices, comparing it 
with the result of a simple population sampling. The underreporting of contacts as modeled by p is shown to have 
a very strong impact.

Discussion
In this paper, we investigated if data coming from friendship surveys can be considered as similar to a sampling 
procedure on the contact network in a population, in the context of the estimation of the outcome of spreading 
processes. We focus here on infectious diseases for which contact networks are considered as a relevant proxy 
of transmission possibilities4. The rationale leading to this question comes from the quantitative comparison 
of friendship and contact networks collected within the same population, discussed in Mastrandrea et al.11 in 
the context of a high school: friendship and contact networks are indeed different, and many short contacts 
occur between individuals who are not friends; however, the longest contacts, which play an important role in 
potential propagation events, effectively correspond to friendship links, and the overall structure of the networks, 
in terms of interactions between different classes, are similar. Objectively measured contact networks are not 
always available, and friendship networks could be easier to obtain than contact networks in some situations. 

Figure 8.  Color maps of the average epidemic size for epidemics with size above 20% for several values 
of β/μ. When no epidemics has size above 20%, the value is zero. The three dashed lines represent the value 
of average epidemic size at 5%, 10%, 20% of the reference value (solid line), which corresponds to the average 
epidemic size of the SIR spreading simulations performed on the contact network.
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Moreover, surveys asking individuals about their friends might suffer less from memory biases than contact dia-
ries. Understanding if and how friendship surveys could be used in models of spreading processes would thus be 
interesting32. Most importantly, framing the relation between friendship networks and actual contact networks 
as a sampling procedure might also help design and evaluate procedures to compensate for the resulting biases in 
the estimation of epidemic risks.

To make progresses in this direction, we have considered a publicly available data set combining, for the same 
set of individuals, a contact network measured by wearable sensors and a friendship network obtained by a sur-
vey. We have considered several ways of sampling the contact network and investigated their similarity with the 
friendship network with respect to simulations of epidemic spread. We have first considered a uniform random 
sampling of nodes, as the friendship network has much less nodes than the contact network. The RN method 
simply samples nodes at random and considers the resulting induced subgraph, while the EGO method is closer 
to a survey procedure, as it includes nodes chosen at random and all their contacts. In both cases, the obtained 
networks have much higher densities than the friendship network. As a consequence, the outcomes of epidemic 
spreading performed on these networks yield a much higher estimation of the epidemic risk than the friendship 
network. We have therefore considered sampling methods in which the density could be tuned, at fixed number 
of nodes. In the RE and RNref methods, we choose edges at random, which leads to a rather small clustering coef-
ficient in the sampled networks and thus the resulting estimation of the epidemic risk is still higher than for the 
friendship network. These methods seem indeed too naive to recover the small scale structures and correlations 
of the friendship network.

Finally, we designed the EGOref sampling method, in a way to mimic a survey procedure in which nodes 
(egos) report on their friendships, under the assumptions that all reported friendships correspond to contacts, 
and that the probability that a contact corresponds to a friendship is larger for longer contacts. Note that this 
method is not aimed at reproducing exactly the friendship network (in which some links in fact do not corre-
spond to contacts), but its goal is to produce a sampled network whose properties are close enough to the friend-
ship network to lead to similar outcomes when used in simulations of spreading processes. The sampling method 
depends, at fixed number of egos, on a single parameter p, which determines the density of the resulting sampled 
network. In particular, for a uniform sampling of nodes, we can choose p to have the same density as the friend-
ship network. At fixed density, this method allows us to recover a higher coefficient of clustering than the other 
sampling methods. Most importantly, simulations of spreading processes performed on the resulting sampled 
network yield an estimation of the epidemic risk in very good agreement with simulations using the friendship 
network, for a wide range of spreading parameters.

Some limitations of our approach are worth discussing. First, the EGOref method considers a uniform sam-
pling of nodes. Choosing the egos with the same class distributions than in the friendship network leads to a 
slightly better agreement, as shown through the EGOref-het method. The clustering coefficient of the sampled 
networks is however still lower than in the empirical friendship network. More involved sampling procedures 
allowing to control the clustering might be sought, but would result in more complex and less intuitive sampling 
rules. The way we choose to assign the weights to edges in the sampled networks can also be discussed. On the 
one hand, the distribution of weights is known to be very robust in human contact networks, even in very differ-
ent contexts such as schools or hospitals6,28, so that it seems natural to use the empirical distribution of weights, 
which can be taken from publicly available datasets, to assign weights to links obtained through surveys. On the 
other hand, a random assignment of weights destroys edge-weights correlations that can have an impact on the 
outcome of spreading simulations. We have considered such a random assignment as our goal is to compare the 
friendship network to a sampled contact network: when only friendship data is available, a natural way to perform 
simulations of epidemic spreading processes is indeed to assign weights at random to the friendship links. More 
accurate ways to assign weights in order to mimic the correlations linking the strengths and degrees of nodes in 
the contact network would be of great interest, but might depend on the context. We have also considered static 
networks, while real contact networks evolve over time. As mentioned above, this is based on a twofold rationale: 
as friendship data to not include temporal information, the comparison should be done with a sampling of a static 
weighted contact network; Moreover, for slow propagation timescales corresponding e.g. to flu-like illnesses, the 
precise dynamic of the contacts does not represent a crucial information28. In order to extend the comparison to 
faster processes, one should create surrogate timescales on the links similarly to ref. 23. Finally, our study is based 
on only one specific population. This is due to the current lack of datasets in which both contact and friendship 
networks are available. Further investigations in different contexts would be of great interest.

The sampling method we have proposed here depends on two parameters: the number of respondents N and 
the parameter p that allows to tune the amount of contacts reported. We have started here to study its impact on 
various data sets of contact networks in different contexts, and future work will focus on designing and evaluat-
ing methods to estimate the epidemic risk from incompletely and non-uniformly sampled data, such as the one 
described by Génois et al.23 for uniform population sampling, and to understand their efficiency and limits when 
the sampling parameters are varied.

Methods
Data.  The data we consider was collected by the SocioPatterns collaboration in a French high school in 
Marseille during the week December 2nd–6th 2013, and subsequently analysed and made publicly available11. 
We use here two different data sets describing different types of relationships between students. The first corre-
sponds to close face-to-face interactions between individuals equipped with wearable sensors. These contacts 
were measured for 327 students structured in 9 classes (called “classes préparatoires”) corresponding to different 
fields of study: 3 classes of Biology with respectively 37, 33 and 40 students, 3 classes of Mathematics-Physics 
with respectively 33, 29 and 38 students, 3 classes of Physics-Chemistry with respectively 44, 39 and 34 students. 
The participation rate reached 86.3% (there were overall 379 students in the 9 classes). The second type of data 
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describes friendships relations between students. Students were asked to give the names of their friends within 
the high school. Over the 327 participants, only 135 students (41.3%) answered the survey. Students who were 
cited as friend of a respondent but did not answer the survey were removed from the data. The 135 participants to 
the survey are distributed in the 9 classes as following: 10, 20 and 28 participants in the 3 classes of Biology; 21, 3 
and 7 participants in the 3 classes of Mathematics-Physics; 21, 10 and 15 participants in the 3 classes of Physics-
Chemistry. A link is drawn in the friendship network between two students if at least one reported the other as 
friend.

SIR simulations.  To perform epidemic spreading simulations on the different networks, we need to take the 
link weights into account. The weight Wij of the edge between nodes i and j of the contact network gives the total 
duration of the contacts that occurred between i and j during the total duration of the measure, T. We thus con-
sider normalised weights wij =  Wij/T: for a Susceptible node i in contact with an Infectious node j, the probability 
of becoming Infectious is β ⋅ ⋅w dtij  per time step dt. For an Infectious node, the probability of becoming 
Recovered during the time step dt is µ ⋅ dt. Each process starts with all nodes in the susceptible state except one 
infectious chosen at random (the seed). As we consider static networks, the parameters β and μ enter only 
through their ratio β/μ for the determination of the outbreak size. For each value of β/μ, results are averaged over 
1000 simulations with randomly chosen seed. For the simulations on the friendship network, the weights are 
assigned at random to the links for each run. For the simulations on the sampled networks, a different sampling 
and weights assignment are performed for each run.
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