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Error estimate for the upwind scheme for the linear transport
equation with boundary data

Nina Aguillon∗, Franck Boyer†

June 8, 2016

Abstract

We study the upwind finite volume scheme on a general mesh for the initial and boundary-value problem
associated with a linear transport equation. For any BV initial and boundary data we prove the (optimal)
convergence rate 1/2 in the L1-norm. Compared to previous works, our main contribution is to take into
account the boundary data and to relax some regularity assumptions on the velocity field.

As an intermediate result, we also provide a complete proof of the BV regularity of weak solutions of
such a general transport problem.

1 Introduction

1.1 Framework and main result
This paper is a contribution to the analysis of the upwind finite volume scheme for the approximation of weak
solutions of the following linear transport problem

∂tu(t, x) + v(t, x) · ∇xu(t, x) = 0, t ∈ (0, T ), x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = ub(t, x), t ∈ (0, T ), x ∈ Γ, where v(t, x) · n(x) < 0.

(1)

The final time T > 0, the velocity field v, the initial data u0 and the (inflow) boundary data ub are given. The
domain Ω ⊂ Rd is assumed to be bounded and at least of class C3; its boundary is denoted by Γ = ∂Ω and n
is the outward unit normal. We shall use the following notations

ΩT := (0, T )× Ω, ΓT := (0, T )× Γ.

We present in details the upwind finite volume scheme for this problem in Section 3. At that stage, we
only point out that the convergence analysis for this problem has already been done in [Boy11] under general
assumptions, whereas an error estimate was obtained for instance in [MV07] in the case where the problem
is posed in the whole space Ω = Rd (that is without boundary data) and for a Lipshitz continuous advection
field v. In this work, we would like to prove the same kind of error estimates as in [MV07] but for the full
problem (1) taking into account the boundary data. Moreover, our assumptions on the velocity field are weaker
than the one in [MV07] since we allow time discontinuities for v.

Let us remark, in this introduction, that the presence of a boundary data really makes the structure of the
solution u more complicated so that the error analysis is not a straightforward extension of previous works,
even though our proof is strongly inspired by the one in [MV07].
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• First, even if u0 and ub are smooth and compatible at time t = 0, this regularity is not inherited at all
times.
As an example let us consider Ω = (0,+∞) ⊂ R, ub = 0 and u0 ∈ C∞(Ω) compactly supported in Ω. Let
a > 0 such that u0(a) 6= 0. We take v that depends only on time as follows v(t) = 2(t− a)/a.
For 0 < t < a, we have v(t) < 0, and thus there is no inflow boundary. The exact solution is thus given
by

u(t, x) = u0

(
x−

ˆ t

0

v(s)ds

)
= u0(x+ 2t− t2/a),

and in particular, at time t = a, we have u(a, 0) = u0(a) 6= 0. At time t = a, the velocity field v changes
it sign and thus the inflow boundary data has to be taken into account. The solution becomes

u(t, x) = u0(x+ 2t− t2/a)1{x>2t−t2/a−a},

and it is clear that it is no more continuous in space for any time t > a. The solution is not smooth
anymore and thus, even if one regularize the data by any convolution process, we cannot expect that the
associated exact solution of (1) for those regularized data will be smooth. Observe that the regularity
of v is not important in this behavior but only the fact that the inflow/outflow parts of the boundary
may depend on time.
Actually, the suitable assumption we shall need in our analysis is the fact that the inflow part of the
boundary is of finite perimeter (see (9)).

• Observe that, even though the solution clearly do not depend on the values of ub outside the inflow part
of the boundary, we will require in assumption (3) some regularity of ub on the whole boundary ΓT . If
one is only given the values of ub on the inflow part of the boundary, this amounts to require that there
exists some extension of this data on the whole boundary ΓT that satisfies (3).
It seems that this assumption is necessary to guarantee that the solution u of the transport problem has
bounded variations as illustrated in Remark 2.7 given in the sequel.

• Provided that (3) and suitable assumptions on v (weaker than the ones we need for the error analysis)
hold, we can prove that the solution u of (1) has bounded variations. This BV regularity result for the
initial- and boundary-value transport problem does not seem to be available in the literature in the form
we need. This property, that has some interest by itself, is thus proved in an independent Section 7.

Let us now state the regularity assumptions we need on the data to perform the error analysis:

u0 ∈ BV(Ω) ∩ L∞(Ω), (2)

ub ∈ BV(ΓT ) ∩ L∞(ΓT ), (3)
divv = 0, in ΩT ,

v ∈ BV(ΩT ) ∩ L∞(ΩT ),

Lv := ‖∇xv‖L∞(ΩT ) < +∞.
(4)

The last assumption says that v is Lipschitz-continuous in space, uniformly in time, but we allow time discon-
tinuities for v.

Roughly speaking, if u∆x is the approximate solution given by the upwind finite volume scheme, our main
result will be the following.

Theorem. Assume that the data and the mesh satisfy suitable regularity assumptions and that the time step
fulfills a strong CFL condition, then we have the estimate

‖u− u∆x‖L∞(0,T ;L1(Ω)) +

¨
ΓT
|u− u∆x||v · n|dσdt ≤ C

√
∆x.

The precise statement is given in Theorem 4.1, where the hypothesis are described and discussed and the
trace terms are suitably defined.
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1.2 State of the art
The estimation of the order of convergence for the linear transport equation on a general mesh has a long
history, going back to Kuznetsov in the 70’s. Let us briefly describe some of the existing bibliography. We
restrict our attention to results on the linear transport equation or involving a boundary data, discretized with
a finite volume method. A wider bibliography extended to nonlinear conservation laws or other numerical
methods can be found in those papers.

• Advection equation with Lipschitz continuous velocity field on Rd. When the initial data (and hence
the exact solution) is smooth and when the mesh is cartesian, the Lax–Wendroff theorem yields the
convergence at order 1 of the scheme. On noncartesian grids, the Lax–Wendroff theorem does not apply
because first, the scheme is not consistent in the finite difference sense and second, no uniform BV bound
holds in general (see the counterexample of Després [Des04a]).

However a 1/2 convergence rate can be proved in various norms and for different regularity assumptions on
the data. This was proven in the pioneering work [Kuz76] on cartesian meshes, in [VV03] for Friedrichs
systems, in [Des04b, Des04a] for constant velocity fields, and in [MV07, Mer08] for space and time
Lipschitz continuous velocity fields. Using a probabilistic interpretation of the scheme, similar results are
obtained in [DL11] for time independent but non divergence free velocity fields.

Let us underline that, on unstructured grids, the order 1/2 is optimal even though the initial data is
smooth, see the example of Peterson [Pet91].

In some cases, the first order convergence can be recovered with additional hypothesis on the mesh,
see [BGP05]. We will not tackle this problem here and will focus on the case of general meshes and BV
data.

• Advection equation with Lipschitz continuous velocity field on a bounded domain. To our knowledge, this
work is the first to give the optimal order 1/2 on the bounded domain and general data. The influence
of the boundary is studied in [CVV00] for Friedrichs system, but the solution is assumed to be smooth.
In [CH99] and [Vig96] orders of convergence are proven in the framework of scalar conservation laws; the
nonlinearity of the flux introduces many difficulties and the best convergence rate obtained so far is 1/4.
Moreover, the fact that the exact solution has total bounded variation is quite hard to obtain. In the
case of a homogenous boundary condition (i.e. ub = 0), it is proven in [BlRN79], but the extension to
non-homogenous Dirichlet condition is quite difficult, as underlined in [CR15], and requires regularity
on ub and some compatibility conditions, see [CR15, Theorem 2.7]. In the case of the linear transport
equation we are able to give a simpler and more general proof, see Section 7 of the present paper.

• Less regular velocity field. When the velocity field v is not Lipschitz continuous, the exact solution cannot
be obtained by the method of characteristics and it is necessary to build a new framework in which (1)
is well-posed. Within the theory of DiPerna-Lions, the convergence of the scheme (with no evaluation
of the order of convergence) is proved in [Boy11]. When v is one-sided Lipschitz continuous, an optimal
order of convergence has recently been obtained in [DLV16] on Cartesian meshes. Those cases are beyond
the scope of this paper.

In this historical landscape, our work is the closest to [MV07] since we extend their result to the case
where a boundary data has to be taken into account. We actually follow the sketch of their proof. However,
due to the influence of the boundary that complicates the structure of the solution, this extension is not
straightforward. In particular we propose a new way to regularize the exact solution that is adapted to the
treatment of boundary terms and which, additionally, requires less regularity on the vector field v. We will
enlighten throughout the paper the key differences and novelties compared to this reference.

The paper is organized as follows. We continue this introduction with some notation and some useful results
on BV functions. In section 2 we expose some results on the exact solution of (1). Some of them are well
known (weak formulation, renormalisation properties) and other are new (Lipschitz continuity of the solution
in the normal direction near the boundary, see Proposition 2.4). The upwind scheme and the assumptions
on the mesh are presented in Section 3. Our main result, Theorem 4.1, is stated in section 4 together with
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the intermediate results that we need during its proof. The results concerning the regularization by a space
convolution of the exact solution are gathered in Section 5. Section 6 is devoted to some estimates related to the
properties of the discretization method. The curved boundary and the low regularity in time of the considered
functions complicate the analysis. Eventually, in Section 7 (that can be read somehow independently) we
propose a proof of the BV regularity property stated in Theorem 2.5 and that we use all along the paper.

1.3 Notation and useful results
Averages and measures In the sequel, if (X,µ) is any measurable set with µ(X) < +∞ and if Φ belongs
to L1(X,µ), we denote by  

X

Φ dµ :=
1

µ(X)

ˆ
X

Φ dµ

the average of Φ over X.
We shall use the notation Hd−1 for the (d− 1)-dimensional Hausdorff measure.

BV functions The natural regularity class we shall deal with in this paper is the one of bounded variation
functions. Let us recall the main definitions and properties that we need and that one can find, for instance,
in [AFP00].

A function f ∈ L1(U) defined on an open set U of RN is said to be of bounded variations if and only if

TVU (f) := sup

{ˆ
U

fdiv Φ dx, for Φ ∈ C∞c (U,RN ), ‖Φ‖L∞(U) ≤ 1

}
< +∞.

The space of such functions is denoted by BV(U) and is equipped with the following norm

‖f‖BV(U) := ‖f‖L1(U) + TVU (f).

Observe that the total variation is semi-continuous in the following sense : for any f ∈ L1(U) and (fn)n ⊂ L1(U)
we have

‖fn − f‖L1(U) −−−−→
n→∞

0 =⇒ TVU (f) ≤ lim inf
n→∞

TVU (fn). (5)

We note that W 1,1(U) ⊂ BV(U) and that for such functions, we have TVU (f) = ‖∇f‖L1(U). Moreover, the
set C∞(U) is weakly dense in BV(U) in the following sense

For any f ∈ BV(U), there exists a sequence (fn)n ∈ C∞(U) such that
‖fn − f‖L1(U) −−−−→

n→∞
0, and TVU (fn) = ‖∇fn‖L1(U) −−−−→

n→∞
TVU (f).

(6)

Moreover, if f ∈ BV(U) ∩ L∞(U), then the sequence (fn)n can be chosen to satisfy ‖fn‖L∞(U) ≤ 2‖f‖L∞(U).
The trace operator γ∂U : f ∈ C∞(U) 7→ f|∂U ∈ L1(U) can be continuously extended to BV(U) in the

following sense : for any f ∈ BV(U) and (fn)n ⊂ BV(U), we have

‖fn − f‖L1(U) + |TVU (fn)− TVU (f)| −−−−→
n→∞

0 =⇒ ‖γ∂Ufn − γ∂Uf‖L1(∂U) −−−−→
n→∞

0.

One can naturally extend all the previous definitions and properties to define the space BV on smooth manifolds
such as ΓT = (0, T )× Γ.

We shall need at some point the following property that can be easily obtained for smooth functions and
then by a density argument.

Lemma 1.1. For any R > 0, h > 0, we set K = (−R,R)d−1 × [0, h), L = (−R,R)d−1 × (−h, 0], and
σ = (−R,R)d−1 × {0}. We have

Rd−1

∣∣∣∣ 
K

f dx−
 
L

f dx

∣∣∣∣ ≤ TVK∪L(f), ∀f ∈ BV(K ∪ L),

and
Rd−1

∣∣∣∣ 
K

f dx−
 
σ

γσf dσ

∣∣∣∣ ≤ TVK(f), ∀f ∈ BV(K).
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Level sets of BV functions, sets of finite perimeter We say that a subset E of Ω has a finite perimeter
if

PerΩ(E) := TVΩ(1E) < +∞.

The main property we will use is that the level sets of a BV function are of finite perimeter and we can relate
the function to its level sets through the following construction: for any f ∈ BV(Ω) and any η ∈ R we define

χηf =


1{f>η}, if η > 0,

−1{f<η}, if η < 0,

0, if η = 0,

and the following result holds.

Theorem 1.2. With the previous notation, for any f ∈ BV(Ω) we have:

1. If f ∈ L∞(Ω), then χηf = 0 for any η such that |η| > ‖f‖L∞(Ω).

2. The Fubini theorem gives that

f =

ˆ
R
χηf dη in L1(Ω), and ‖f‖L1(Ω) =

ˆ
R
‖χηf‖L1(Ω)dη.

3. Co-aera formula : the total variation of f can be expressed as follows

TVΩ(f) =

ˆ
R

TVΩ(χηf )dη =

ˆ
R

PerΩ({f > η})dη.

We shall use similar notation and results when Ω is replaced by ΩT or by the manifold ΓT .

Normal and tangential coordinates Since Ω is assumed to be a bounded C3 domain of Rd, we can use
the following notations and results (see for instance [Boy05, BF13]).

For any ξ > 0, we introduce the sets (see Figure 1)

Oξ := {x ∈ Ω, d(x,Γ) < ξ}, and Γξ := {x ∈ Ω, d(x,Γ) = ξ}.

There exists a ξΩ > 0 such that, on OξΩ , the distance map d(.,Γ) is smooth, and the orthogonal projection PΓ

onto Γ is well-defined and smooth. We recall that PΓ(x) is the unique point in Γ such that d(x,Γ) = d(x, PΓx).
For any x ∈ OξΩ , we can set n(x) = −∇d(x,Γ) so that we have extended the outward unit normal to a

smooth vector field on OξΩ . We will additionaly extend n to the whole domain Ω in such a way that n is
smooth and ‖n‖L∞(ΩT ) ≤ 1.

One can easily check the properties

n(x) = n(PΓ(x)), and x = PΓ(x)− d(x,Γ)n(PΓ(x)), ∀x ∈ OξΩ ,

so that, the following map is a diffeomorphism

(s, x̃) ∈ [0, ξΩ]× Γ 7→ x̃− sn(x̃) ∈ OξΩ .

With those notations we can use normal and tangential coordinates to make computations near the boundary
of Ω. More precisely, there exists a smooth function J : [0, ξΩ] × Γ → R, depending on the geometry of the
manifold Γ, such that J(0, x̃) = 1 for any x̃ ∈ Γ, inf [0,ξΩ]×Γ J > 0 and such that the following change of variable
formulas hold 

ˆ
Γξ

f(x)dσ(x) =

ˆ
Γ

f(x̃− ξn(x̃))J(ξ, x̃)dσ(x̃), ∀ξ ∈ [0, ξΩ],

ˆ
Oξ
f(x)dx =

ˆ ξ

0

ˆ
Γ

f(x̃− sn(x̃))J(s, x̃)dσ(x̃)ds, ∀ξ ∈ [0, ξΩ].

(7)
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Oξ

ξ

Γξ

Γ

d(x,Γ)

PΓ(x)

x

Figure 1: Notations near the boundary of Ω

2 Weak solutions of the transport problem
We gather here some results and notation concerning weak solutions of the initial and boundary problem for
the transport equation (1).

In this work, we assume that the velocity field v is bounded and Lipschitz continuous in space, see (4).
Therefore, we may try to solve (1) by the method of characteristics that we recall here. We define by X the
flow associated with v (or, more precisely, any smooth extension of v the whole space) as the solution of the
following Cauchy problem {

∂tX(t; t0, x0) = v(t,X(t; t0, x0)),

X(t0; t0, x0) = x0.

A simple computation shows that any (smooth enough) solution of (1) is constant along any portion of the
characteristics curves that is included in Ω. If v is tangent to the boundary, all the characteristics are included
in Ω and thus we obtain the exact formula

u(t, x) = u0(X(0; t, x)), ∀t ∈ (0, T ),∀x ∈ Ω.

In the case we are interested, that is when v is not tangent to the boundary, we need to account for the
boundary data and we obtain

u(t, x) =

{
ub(t

0(t, x), X(t0(t, x); t, x)) if t0(t, x) > 0,
u0(X(0; t, x)) otherwise,

(8)

where
t0(t, x) = sup{s, such that 0 ≤ s ≤ t, X(s, t, x) ∈ Ω},

is the time at which the backward characteristics leave the space time domain (0, T )× Ω.
As in the introduction, we clearly see again in Formula (8) that even if u0 and ub are smooth, the solution u

may not be smooth. This is one of the reasons why we cannot reduce the analysis to smooth solutions and
need to cope with weak solutions of the transport problem. Observe that we will not use the formula (8) at
any point in the paper, in particular because the entering time t0 is difficult to handle.

The advection field v being given, we can define the inflow and outflow parts of the boundary as follows

ΓTin := {(t, x) ∈ ΓT , v(t, x) · n(x) < 0}, and ΓTout := {(t, x) ∈ ΓT , v(t, x) · n(x) > 0}.
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For our error analysis to hold, we shall need the following assumption

ΓTin is of finite perimeter in ΓT . (9)

We can now state the following existence and uniqueness result for weak solutions of Problem (1). This
result is valid under more general assumptions than the one we adopted in the introduction and its proof can
be found in [Boy05, BF13].

Theorem 2.1. Assume that Ω is a bounded Lipschitz domain and v ∈ L1(0, T ; (W 1,1(Ω))d) with divv = 0.
For any u0 ∈ L∞(Ω), ub ∈ L∞(ΓT ) there exists a unique function u ∈ L∞(ΩT ) ∩ C0([0, T ], L1(Ω)) and a

function γu ∈ L∞(ΓT ), refered to as the trace of u, which is unique almost everywhere on ΓTin ∪ ΓTout and such
that

u(0, .) = u0, and γu = ub, almost everywhere in ΓTin,

and ¨
ΩT

u(∂tϕ+ v · ∇xϕ)dxdt+

ˆ
Ω

u0ϕ(0, .)dx−
ˆ

Ω

u(T, .)ϕ(T, .) dx−
¨

ΓT
(γu)ϕv · ndσdt = 0,

for any ϕ ∈W 1,1([0, T ]× Ω).

In practice, we will often use the following formulation in which the inflow and outflow parts of the boundary
are explicitly separated

¨
ΩT

u(∂tϕ+ v · ∇xϕ)dxdt+

ˆ
Ω

u0ϕ(0, .)dx−
ˆ

Ω

u(T, .)ϕ(T, .)dx

−
¨

ΓTin

ubϕv · ndσdt−
¨

ΓTout

(γu)ϕv · ndσdt = 0. (10)

In addition to the previous well-posedness result, we can also state the following renormalisation properties
for the weak solutions that will be useful.

Theorem 2.2. Under the same assumptions as in the previous theorem and for any piecewise Lipschitz con-
tinuous function β : R→ R we have that β(u) is the unique weak solution of (1) associated with the data β(u0)
and β(ub). Moreover, we have the trace equality γ(β(u)) = β(γ(u)) almost everywhere on ΓTin ∪ ΓTout.

As a consequence of those properties, we deduce the following result.

Corollary 2.3. Under the same assumptions as in Theorem 2.1 we have that:

• Let E ⊂ R be a set such that u0 ∈ E, almost everywhere in Ω, and ub ∈ E almost everywhere in ΓTin.
Then, we have u ∈ E (resp. γu ∈ E) almost everywhere in ΩT (resp. almost everywhere in ΓTout).
In particular the maximum principle holds: u and γu take their values in the interval [umin, umax], with

umin := min

(
inf
Ω
u0, inf

ΓT
ub

)
, and umax := max

(
sup

Ω
u0, sup

ΓT

ub

)
. (11)

• The following L2-energy balance equation holdsˆ
Ω

|u(T, .)|2dx+

¨
ΓTout

|γu|2|v · n|dσdt =

ˆ
Ω

|u0|2dx+

¨
ΓTin

|ub|2|v · n|dσdt. (12)

We also refer to [Boy05, BF13] for the proofs of such results. Notice that the same result is true if one uses
the infimum and the supremum of ub only on ΓTin in (11) but since this is no more the case for the approximate
solution (see Proposition 3.3)), we chose to use here this definition of umin and umax.

Finally, to obtain the error estimate, we will use some regularity properties for the exact solution of our
transport problem with initial and boundary data. The first needed result concerns the continuity of the
solution near the boundary with respect to the normal coordinate. Such a continuity result was proved under
general assumptions in [Boy05], but we shall need here a sharper estimate of the Lipschitz kind that we can
state as follows.
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Proposition 2.4. Assume that (2), (3) and (4) hold as well as the finite perimeter condition (9). Then there
exists C > 0 such that the unique weak solution u of the transport equation (1) satisfies, for any 0 < ξ < ξΩ,
the estimate¨

ΓTin

|ub(t, x̃)− u(t, x̃− ξn(x̃))| |v(t, x̃) · n(x̃)|dσ(x̃)dt ≤ C
(
TVΓT (ΓTin) + TVΓT (ub) + ‖u‖L∞(ΩT )

)
ξ.

Actually, we shall prove a slightly more general result in Section 5.2.
The second result we need is the L∞(0, T ; BV(Ω)) regularity of the solution.

Theorem 2.5. Let Ω be a bounded C3 domain of Rd. Suppose that u0 satisfies (2), ub satisfies (3) and v
satisfies (4), then the unique weak solution u of the transport problem (1) belongs to L∞(0, T ; BV(Ω)). More
precisely, we have u(t, .) ∈ BV(Ω) for any t ∈ [0, T ] and

sup
t∈[0,T ]

TVΩ(u(t, .)) ≤ C(‖γΓu
0 − ub(0, .)‖L1(Γ) + TVΩ(u0) + TVΓT (ub)),

where C depends only on Ω, v and T .

Remark 2.6. It can be easily deduced from this result that the solution u actually belongs to BV((0, T )×Ω).

A complete proof of this result does not seem to be available in the literature, that is the reason why we
give such a proof in Section 7. We cannot directly use the result of [BlRN79] since it requires much higher
regularity on the boundary data ub, see also [CR15]. Our strategy of proof is to first deal with the case where
Ω is an half-space: here we introduce a uniform cartesian discretisation of Ω and prove a uniform discrete BV
estimate on the approximate solution, then we pass to the limit, in the spirit of [CH99] on the whole space
and [OV06] for polyhedral domain. Finally we recover the result on the general domain Ω by using suitable
change of variables.

We will actually prove a slightly more precise result where neither the BV regularity of v nor the divergence-
free condition are required.

Remark 2.7. The fact that ub is BV on the whole boundary ΓT and not only on the inflow part ΓTin is actually
a necessary condition for this theorem to hold, as illustrated by the following example.

Consider the domain Ω = (0,+∞). For any k ≥ 1 we set τk = 2
32−k, T1 = 0, and for k ≥ 2, Tk =∑k−1

j=1
3
2τj = 1− 2−(k−1). Then, we choose any vk > 0 such that

∑
k≥1 vk < +∞.

We define the space independent velocity field v(t, x) : (0, 1)× Ω→ R as follows

v(t, x) =

{
vk for t ∈ (Tk, Tk + τk)

−vk for t ∈ (Tk + τk, Tk + 3
2τk).

The velocity field is thus oriented in the inflow direction during a time interval τk then in the outflow direction
during a time interval τk/2. Since v does not depend on the space variable x, and

∑
k≥1 vk < +∞, it is clear

that v satisfies (4) (at least away from infinity) and we have

ΓTin =
⋃
k≥1

(Tk, Tk + τk)× {0}.

Consider now the initial data u0 = 0 and the boundary data ub defined on ΓTin by

ub(t) = (1 + (−1)k−1)/2, for t ∈ (Tk, Tk + τk),

which means that ub(t) = 1 on (Tk, Tk + τk) if k is odd, and ub(t) = 0 otherwise. Observe that ub ∈ BV(ΓTin)
but there is no function ub ∈ BV(ΓT ) such that ub = ub on ΓTin.

The exact solution of the transport problem for those data can be computed explicitely, see Figure 2. To
this end we set X1 = 0 and

Xk =

k−1∑
j=1

1

2
vjτj , ∀k ≥ 2,
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−X1 = 0−X2−X3−X4−X5−X6

U(.)

u(T2, .)

u(T3, .)

u(T4, .)

Figure 2: Description of the solution exhibited in Remark 2.7

and we define for any x ∈ R,

U(x) =


0 for x > 0,

1 for −Xk+1 < x < −Xk with k ≥ 1 odd,
0 for −Xk+1 < x < −Xk with k ≥ 2 even.

Then, the exact solution u satisfies, for any k,and any x > 0,

u(T k, x) = U(x−Xk).

As a consequence, the total variation of u(T k, .) is simply given by

TVΩ(u(T k, .)) = k − 1.

Since Tk → 1 as k →∞, we deduce that

sup
t<1

TVΩ(u(t, .)) = +∞.

3 The upwind scheme
Let us now introduce the numerical method that we want to analyse in this paper. It is one of the most classical
and simple scheme to approximate the solution of transport problem, the explicit-in-time upwind scheme.

3.1 The finite volume mesh
We discretize the domain Ω with a mesh T made of disjoint cells (the notation for a generic cell is K) and
such that Ω = ∪K∈TK. The interior cells, namely the ones such that Hd−1(Γ ∩ ∂K) = 0, are supposed to
be polyhedral, the set of such cells is refered to as T int. However, since the domain Ω is not assumed to be
polyhedral, we do not make such an assumption for boundary cells that may possess curved faces. The set of
such boundary cells is refered to as T ext = T \ T int.

For any K ∈ T , |K| will be its Lebesgue measure, and we shall also denote by ∂K the set of its faces. A
generic face in the mesh will be refered to as σ, and we set |σ| = Hd−1(σ) its area. The set of all the faces in the
mesh in denoted by ∂T ; the set of the faces included in Γ is denoted by ∂T ext and finally ∂T int = ∂T \ ∂T ext

is the set of the interior faces. The notation are illustrated on Figure 3.
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interior cells in T int

exterior cells in T ext

virtual cells in T ∗

outflow edges in ∂T n+

inflow edges in ∂T n−

interior edges in ∂T int

v

Figure 3: Notations attached to a mesh and to a an example of velocity field v

The mesh size ∆x is the maximum of the diameters of the cells in the mesh. Since ∆x is meant to tend to
0, we shall additionally assume that

∆x ≤ ξΩ2. (13)

We assume the following somehow standard regularity properties of the mesh : for any K ∈ T there exists a
point xK ∈ K such that, for some α > 0 we have

B(xK , αdiam(K)) ⊂ K, ∀K ∈ T , (14)

Card(∂K) ≤ 1

α
, ∀K ∈ T , (15)∑

σ∈∂K

|σ|diam(K) ≤ 1

α
|K|, ∀K ∈ T . (16)

Actually, for interior cells one can prove that (16) is a consequence of assumption (14) and of the convexity
property.

We shall need the following lemma which is proven for instance in [DE06, Lemma 6.3]; a more general
version without the convexity hypothesis is proven in [DE09, Lemma 6.6].

Lemma 3.1. Assume that the mesh satisfies (14). Then, there exists a constant C > 0 depending only on d
and α such that for any f ∈ H1(Ω) we have( 

K

f dx−
 
σ

f dσ

)2

≤ Cdiam(K)

|σ|

ˆ
K

|∇f |2dx, ∀K ∈ T int,∀σ ∈ ∂K.

The one-dimensional version of this kind of result will also be useful and reads∣∣∣∣∣ 1

|b− a|

ˆ b

a

f(t)dt− f(a)

∣∣∣∣∣
2

≤ |b− a|
ˆ b

a

|f ′(t)|2dt, ∀f ∈ H1(a, b), ∀a < b. (17)

We shall finally use the following result which can be proved exactly as in [Dro03, Lemma 7.1].
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Lemma 3.2. Assume that the mesh satisfies (14). Then, there exists a constant C > 0 depending only on d
and α such that for any f ∈W 1,1(Ω) we have

ˆ
K

∣∣∣∣f(x)−
( 

K

f dy

)∣∣∣∣ dx ≤ Cdiam(K)

ˆ
K

|∇f |dx, ∀K ∈ T int.

If two cells K and L share a face, we denote this face as K|L, so that K|L ∈ ∂K. To each exterior face
σ ∈ ∂T ext we associate a virtual cell L ⊂ Ω

c
such that we can write σ = K|L. We denote by T ∗ the set of all

the virtual cells we just introduced, the extended mesh being T ∪ T ∗. Those virtual cells are only a notation
whose interest is to ease the writing of some computations but their precise shape do not enter the analysis at
any point.

We denote by nKL the unit vector normal to K|L, oriented outward of K, this is a constant vector excepted
on the exterior faces that may be non-flat.

The constant time step is chosen as ∆t = T/N , for some N ∈ N and it will be classically constrained by
a CFL stability condition, see (22) below. This CFL condition would not be useful if one is interested in the
implicit scheme.

Additionally, in order to measure the error only with respect to the mesh size, we shall assume that

∆t ≤ 1

α
diam(K), ∀K ∈ T . (18)

where α is the same parameter as in (14) and can be as small as we want.
For n ∈ N we set tn = n∆t, and we denote by Kn the time-space cell Kn = (tn, tn+1) ×K, and similarly

for the time-space faces Kn|Ln = (tn, tn+1)×K|L, σn = (tn, tn+1)× σ.

3.2 Approximation of the data
We discretize the initial and the boundary data by setting

u0
K :=

 
K

u0 dx, ∀K ∈ T , and unb,σ :=�
¨
σn
ub(t, x)dσ(x)dt, ∀n < N,∀σ ∈ ∂T ext,

and
u0

∆x :=
∑
K∈T

u0
K1K ∈ L∞(Ω), ub,∆x :=

∑
n<N

∑
σ∈∂T ext

unb,σ1σn ∈ L∞(ΓT ). (19)

We introduce the average velocity fluxes across time-space faces by setting

V nKL := �

¨
Kn|Ln

v(t, x) · nKLdσ(x)dt, ∀n ∈ N,∀K|L ∈ ∂T .

It is easily seen that
V nKL = −V nLK , for any n ∈ N and any face K|L ∈ ∂T .

With this definition, we can introduce for any n ∈ N, K ∈ T , the sets

Kn
− := {L ∈ T ∪ T ∗, s.t.K|L ∈ ∂T , V nKL < 0} and Kn

+ := {L ∈ T ∪ T ∗, s.t.K|L ∈ ∂T , V nKL ≥ 0}

of the inflow (resp. outflow) neighboring cells of K during the time interval (tn, tn+1), including the virtual
cells for the boundary cells.

We will also need at some point to distinguish the inflow (resp. outflow) exterior faces so that we introduce
the following notations

∂T n− := {K|L ∈ ∂T ext, V nKL < 0}, and ∂T n+ := {K|L ∈ ∂T ext, V nKL ≥ 0}.
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3.3 The upwind scheme
With the above notations, the explicit upwind scheme classically writes

un+1
K − unK +

∆t

|K|
∑
L∈Kn

−

∣∣K|L∣∣V nKLunL +
∆t

|K|
∑
L∈Kn

+

∣∣K|L∣∣V nKLunK = 0.

By the Stokes formula, the fact that divv = 0 yields the conservativity property
∑
L∈∂K

∣∣K|L∣∣V nKL = 0, or
equivalently ∑

L∈Kn
−

∣∣K|L∣∣V nKL = −
∑
L∈Kn

+

∣∣K|L∣∣V nKL,
so that we can write the scheme as follows:

un+1
K − unK +

∆t

|K|
∑
L∈Kn

−

∣∣K|L∣∣V nKL(unL − unK) = 0. (20)

It remains to clarify what unL is if L ∈ T ∗ is a virtual cell. Since the boundary condition in (1) is only imposed
on the inflow part of the boundary, we naturally proceed as follows: let K ∈ T be the unique boundary cell in
the mesh T such that K|L ∈ ∂T ext then the value chosen for unL depends on whether the flow is, in average,
entering or exiting the domain through this face

unL =

{
unb,K|L if L ∈ Kn

−,

unK if L ∈ Kn
+.

(21)

We recall below the classical L∞-stability result for the upwind scheme. Its proof is easily seen from the
Formula (20).

Proposition 3.3. Suppose that for some λ in (0, 1), the following strict Courant–Friedrichs–Lewy condition
holds

∀n ≥ 0, ∀K ∈ T , ∆t
∑
L∈Kn

−

∣∣K|L∣∣|V nKL| ≤ (1− λ)|K|. (22)

Then the numerical solution verifies the discrete maximum principle

umin ≤ unK ≤ umax, ∀n ≥ 0,∀K ∈ T .

where umin and umax are defined in (11).

Notice that the stability result still holds for λ = 0 but we will need this stronger assumption in order to
take benefit of a small but positive amount of numerical dissipation of the scheme. The same assumption was
made in [MV07].

Let us denote by u∆x (resp γu∆x) the piecewise constant function on ΩT (resp. on ΓT ) associated to the
scheme (20)-(21)

u∆x :=
∑
n<N

∑
K∈T

unK1Kn ∈ L∞(ΩT ),

γu∆x :=
∑
n<N

∑
K|L∈T n−

unb,K|L1Kn|Ln +
∑
n<N

∑
K|L∈T n+

unK1Kn|Ln ∈ L∞(ΓT ).

Observe that γu∆x plays the role of the trace of u∆x and that the equality γu∆x = ub,∆x only holds on the
inflow boundary faces as expected.

In the proof of the error estimate we shall use discrete L2-energy estimates that we recall below.

Definition 3.4. We define the total discrete L2-energy balance of the scheme on the whole time interval as
the quantity

E∆x(u∆x, T ) :=

ˆ
Ω

(u0
∆x)2dx−

ˆ
Ω

(u∆x(T, .))2dx−
¨

ΓT
(γu∆x)2(v · n)dσdt, (23)
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and the numerical L2-dissipation of the scheme as the quantity

D∆x(u∆x, T ) :=
∑

0≤n<N
K∈T

|K|(un+1
K − unK)2 +

∑
0≤n<N
K∈T

∑
L∈Kn

−

∆t|V nKL|
∣∣K|L∣∣(unL − unK)2. (24)

Theorem 3.5. The solution of the upwind scheme satisfies the following energy equality

E∆x(u∆x, T ) = −
∑

0≤n<N
K∈T

|K|(un+1
K − unK)2 +

∑
0≤n<N
K∈T

∑
L∈Kn

−

∆t|V nKL|
∣∣K|L∣∣(unL − unK)2. (25)

Moreover, assuming the strict CFL condition (22), we have the estimate

D∆x(u∆x, T ) ≤ 2

λ
E∆x(u∆x, T ). (26)

It proves in particular that E∆x(u∆x, T ) ≥ 0, i.e. the L2-stability of the scheme.

Proof. By definition of u∆x, γu∆x and V nKL, we easily check that

E∆x(u∆x, T ) =
∑
K∈T

|K|(u0
K)2 −

∑
K∈T

|K|(uNK)2

−
∑

0≤n<N

∑
K|L∈∂T n−

∆t(unL)2
∣∣K|L∣∣V nKL − ∑

0≤n<N

∑
K|L∈∂T n+

∆t(unK)2
∣∣K|L∣∣V nKL.

The proof of (25) is very classical. It is obtained by multiplying the scheme (20) by unK , summing the result
over n and K and finally by using conservativity properties of the numerical fluxes to reorganisation the
contribution of each face. This is exactly the same formula (but with slightly different notations) than the one
given in [Boy11, Formula (3.13)]. Notice however that there is a typo in the above reference where a factor ∆t
should be removed in front of the time diffusion term (the one containing un+1

K − unK).
Inequality (26) is proved in [MV07] but without the boundary terms. We thus give a new proof here which,

in addition, is much shorter than the one in the above reference.
Let us define the two non-negative terms

T1 :=
∑

0≤n<N
K∈T

|K|(un+1
K − unK)2, and T2 :=

∑
0≤n<N
K∈T

∑
L∈Kn

−

∆t|V nKL|
∣∣K|L∣∣(unL − unK)2,

so that, by definition, we have

E∆x(u∆x, T ) = −T1 + T2, and D∆x(u∆x, T ) = T1 + T2.

We just have to prove that T1 can be suitably controlled by T2. To this end, for a given K and n, we take the
square of the formula (20) defining the scheme to get

(un+1
K − unK)2 =

∆t2

|K|2

 ∑
L∈Kn

−

∣∣K|L∣∣V nKL(unL − unK)

2

,

that we write in the following way

(un+1
K − unK)2 =

∆t2
(∑

L∈Kn
−

∣∣K|L∣∣V nKL)2

|K|2

(∑
L∈Kn

−

∣∣K|L∣∣V nKL(unL − unK)∑
L∈Kn

−

∣∣K|L∣∣V nKL
)2

.

By definition, we have V nKL < 0 for any L ∈ Kn
− and we can thus use the Jensen inequality in the last factor

to get

(un+1
K − unK)2 ≤

∆t2
(∑

L∈Kn
−

∣∣K|L∣∣|V nKL|)
|K|2

 ∑
L∈Kn

−

∣∣K|L∣∣|V nKL|(unL − unK)2

 ,
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and then, by using the CFL condition (22), we obtain

(un+1
K − unK)2 ≤ (1− λ)

∆t

|K|

 ∑
L∈Kn

−

∣∣K|L∣∣|V nKL|(unL − unK)2

 . (27)

Observe that we implicity assumed that
∑
L∈Kn

−

∣∣K|L∣∣|V nKL| > 0 in this computation, but in the case where

this sum vanish we easily see that all the terms V nKL are zero and thus un+1
K − unK = 0 and finally (27) still

holds.
Multiplying (27) by |K| and summing over n and K leads to the inequality

T1 ≤ (1− λ)T2.

We can then conclude by writing

E∆x(u∆x, T ) = −T1 + T2 ≥ λT2 ≥
λ

2(1− λ)
T1 +

λ

2
T2 ≥

λ

2
(T1 + T2) =

λ

2
D∆x(u∆x, T ).

4 Main result and sketch of the proof
The aim of this paper is to bound the L1-error between the exact solution (and its trace) of the transport
equation (1) and the approximate solution (and its trace) given by the upwind scheme (20).

We denote by E(u, u∆x, T ) the total error at time T defined by

E(u, u∆x, T ) :=

ˆ
Ω

|u− u∆x|(T, .)dx+

¨
ΓT
|γu− γu∆x| |v · n|dσds.

The rest of the paper is devoted to the proof of the following error estimate theorem.

Theorem 4.1. Assume that u0 satisfies (2), ub satisifes (3) and v satisfies (4). Moreover, we assume that the
inflow boundary satisfies (9). Finally, we assume that the mesh satisfies the regularity assumptions (14)-(15)
and that the CFL condition (22) holds for some λ ∈ (0, 1). Then, we have

E(u, u∆x, T ) ≤ C
(

(1 + PerΓT (ΓTin))‖u‖L∞(ΩT ) + TVΩ(u0) + TVΓT (ub)

)√
∆x.

Let us comment the different hypothesis of Theorem 4.1.

• Hypothesis (9) allows us to deal with the parts of the boundary where v · n changes its sign. This
assumption is particularly useful in the proof of Proposition 2.4, even though we might expect this
proposition to hold even without this assumption.

• Concerning the hypothesis on the velocity field v, we underline that they are weaker than in [MV07],
in which v is supposed to be Lipschitz regular both in space and time. Here discontinuities in time are
allowed, since we only assume that v has total bounded variations in time (and space).

In this section we give the proof of Theorem 4.1 and state all the intermediate results we need. Most of
them are proved in the next sections. In what follows, the letter C denotes a generic constant that may differ
from line to line. It may depend on the data of the problem but not on the discretisation parameters, nor on
regularisation parameters we shall use.
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4.1 Restriction to indicatrix boundary and initial conditions
We shall use the BV regularity assumption on the data to reduce the problem to the case where the initial and
boundary data are characteristic functions of sets of finite perimeter. We use here the notations of Section 1.3.

From the renormalisation property given in Theorem 2.2, it is easily seen that, for any η ∈ R, the unique
weak solution to the transport problem (1) associated with the initial data χηu0 and the boundary data χηub is
nothing but the function χηu; moreover its trace is γ(χηu) = χηγu.

Let us now define uη∆x to be the unique solution of the numerical scheme associated with the initial data
χηu0 and the boundary data χηub . Observe that uη∆x is not, in general, a characteristic function due to the
numerical diffusion of the scheme.

However, since the discretization of the data and the scheme itself are linear, we easily obtain from Theorem
1.2 that the approximate solution u∆x can be written as

u∆x =

ˆ
R
uη∆xdη.

It follows that the error E(u, u∆x, T ) can be bounded as follows

E(u, u∆x, T ) ≤
ˆ
R
E(χηu, u

η
∆x, T )dη =

ˆ
|η|≤‖u‖L∞(ΩT )

E(χηu, u
η
∆x, T )dη.

As a consequence of the co-area formula (Theorem 1.2), we see that Theorem 4.1 will be proved if we
manage to obtain the following estimate

E(χηu, u
η
∆x, T ) ≤ C(1 + PerΓT (ΓTin) + PerΩ({u0 > η}) + PerΓT ({ub > η}))

√
∆x,

for some C independant of η.
Finally, we are led to prove the following result.

Theorem 4.2. Assume that (4) and (9) hold. Then, for any set E0 ⊂ Ω (resp. Eb ⊂ ΓT ) of finite perimeter
in Ω (resp. in ΓT ), we have

E(u, u∆x, T ) ≤ C(1 + PerΓT (ΓTin) + PerΩ(E0) + PerΓT (Eb))
√

∆x,

where u (resp. u∆x) is the solution of the transport problem (1) (resp. of the upwind scheme (20)) associated
with the initial data u0 = 1E0 and the boundary data ub = 1Eb .

In this result, u0 and ub are characteristic functions of finite perimeter sets. This implies in particular, by
Corollary 2.3, that under the CFL condition (22), we have{

u(t, x) ∈ {0, 1}, and u∆x(t, x) ∈ [0, 1], for almost every (t, x) ∈ ΩT ,

γu(t, x) ∈ {0, 1}, and γu∆x(t, x) ∈ [0, 1], for almost every (t, x) ∈ ΓT .
(28)

4.2 Numerical weak formulation. Expression of the L1-error
The approximate solution u∆x and its trace γu∆x are bounded (thanks to the maximum principle, see Propo-
sition 3.3) but obviously do not satisfy the weak formulation (10). However, we would like to write a similar
formulation, yet with suitable corrective terms, that they satisfy. This idea was introduced in [VV03, Propo-
sition 5.1] and exploited in [MV07] to successfully obtain a L1-error estimate for the upwind discretisation of
a transport problem in the whole space as well.

Lemma 4.3. For every test function ϕ in W 1,1([0, T ]× Ω̄), we have
¨

ΩT
u∆x(∂tϕ+ v · ∇xϕ)dxdt+

ˆ
Ω

u0
∆xϕ(0, .)dx−

ˆ
Ω

uN∆xϕ(T, .)dx

−
¨

ΓT
(γu∆x)ϕv · ndσds = µ∆x(ϕ) + ν∆x(ϕ),

(29)
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where the error terms in the weak formulation are defined by

µ∆x(ϕ) :=
∑

0≤n<N
K∈T

|K|(un+1
K − unK)�

¨
Kn

(
ϕ(t, x)− ϕ(tn+1, x)

)
dxdt

and

ν∆x(ϕ) :=
∑

0≤n<N
K∈T

∑
L∈Kn

−

∆t(unL − unK)
∣∣K|L∣∣(V nKL �¨

Kn

ϕdxds− �
¨
Kn|Ln

ϕv · nKLdσdt

)
.

The proof is not detailed since it is very similar to the one in [MV07] for instance, excepted that one need
to take care of boundary terms.

When u0 = 1E0 and ub = 1Eb are indicatrix functions, we deduce from (28), that

u− u∆x (resp. γu− γu∆x) has the same sign as 2u− 1 (resp. as 2(γu)− 1). (30)

Therefore, if we subtract (29) and (10) and use the test function ϕ = 2u− 1, which is also a solution of the
transport equation, we formally obtain the following estimate

E(u, u∆x, T ) ≤ 2

ˆ
Ω

|u0 − u0
∆x| dx+ 3

¨
ΓTin

|ub − γu∆x||v · n|dσdt+ 2|µ∆x(u)|+ 2|ν∆x(u)|,

where we have used that µ∆x(2u− 1) = 2µ∆x(u) and ν∆x(2u− 1) = 2ν∆x(u).
However, this computation is not valid since u is not regular enough to serve as a test function (it takes

exactly two values 0 and 1 and thus does not belong to W 1,1).
The cure proposed in [MV07] to deal with such a difficulty somehow consists in replacing the initial data u0

by one of its regularization (there is no boundary data in this work). When Equation (1) is posed on the whole
space Rd, the solution inherits the regularity of the initial data. The authors propose a kind of smoothing
of the initial indicatrix function u0 by replacing, roughly speaking, the level set E0 by some well-behaved
approximation made of small cubes whose size is controlled all along the flow. Then, they use the regularity
property of the flow to estimate the number of cells that are polluted by this regularization process on the
time interval.

It seems that we cannot use the same strategy in the present work because of the influence of the boundary
data and of the geometry of the inflow part of the boundary, as recalled in the introduction.

As a consequence, we chose here a slightly different approach that rather consists in regularizing the
solution u itself by some convolution operator in space. Such regularization ideas originate from the celebrated
Friedrichs lemma and its application to the renormalized solutions theory for the transport equation (see
[DL89, Boy05, BF13]). The value of the regularization parameter ε will be fixed at the end of the proof as a
function of ∆x.

To define the smoothing operator Sε, we use a non-negative kernel ζ ∈ C∞(Rd), supported in the unit ball
B(0, 1), and with integral 1. For any locally integrable function w ∈ L1

loc(Ω), and any ε > 0, we define

(Sεw)(x) :=

ˆ
Ω

w(y)ζ

(
x− 2εn(x)− y

ε

)
dy

εd
=

ˆ
B(0,1)

w(x− 2εn(x)− εy)ζ (y) dy, for all x ∈ Ω. (31)

In this definition, n is the extension of the unit outward normal vector field introduced in Section 1.3.
In other words, Sεw is a convolution in space of w, with a slight shift that ensures that no value of w outside

of Ω are used. Such a construction ensures that Sεw is smooth and is indeed an approximation of w as ε→ 0.
We will show below that, if u is a solution to the transport problem, then its regularization is almost a

solution to the transport problem up to an error term that we can estimate. This is the purpose of the following
result.

Proposition 4.4. Let v satisfying (4) and u ∈ L∞((0, T )×Ω) ∩ L1(0, T ; BV(Ω)) be any weak solution of the
transport equation

∂tu+ v · ∇u = 0,
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in the distribution sense. Then its space regularization uε(t, .) := Sεu(t, .) defined as in (31), solves the equation

∂tuε + v · ∇uε = gε,

in the distribution sense, where gε ∈ L∞((0, T )× Ω) satisfies the bounds

‖gε‖L∞(ΩT ) ≤ C‖u‖L∞(ΩT ),

‖gε‖L1(ΩT ) ≤ Cε‖u‖L1(0,T ;BV(Ω)),

for some constant C independent of u and ε.
Moreover, uε is smooth and satisfies

‖uε‖L∞(ΩT ) ≤ C‖u‖L∞(ΩT ), and ‖uε − u‖L∞(0,T ;L1(Ω)) ≤ Cε‖u‖L1(0,T ;BV(Ω)),

‖∇t,xuε‖L1(ΩT ) ≤ C‖u‖L1(0,T ;BV(Ω)), and ‖∇t,xuε‖L∞(ΩT ) ≤
C‖u‖L∞(ΩT )

ε
.

The next theorem gives an estimate on the error between the traces γu and γuε (which is nothing but the
restriction of uε to ΓT ) which is not given by the previous result.

Theorem 4.5. Assume that the regularity assumptions (2), (3) and (4) hold. Let u be the exact solution of the
transport equation (1) and uε(t, .) := Sεu(t, .) its regularization defined by (31). Then, there exists a constant
C independent of u and ε such that¨

ΓT
|uε − γu| |v · n|dσdt ≤ C(TVΩ(u0) + TVΓT (ub) + PerΓT (ΓTin) + ‖u‖L∞(ΩT ))ε.

Those two results are proved in Section 5.
With Proposition 4.4 and Theorem 4.5 in hands, we can use 2uε − 1 as a test function in (29) and obtain

the following proposition.

Proposition 4.6. Suppose that u0 = 1E0 and ub = 1Eb are indicatrix functions of finite perimeter sets.
Suppose that assumption (9) holds. Then there exists a constant C depending only on v such that

E(u, u∆x, T ) ≤ 2

ˆ
Ω

|u0 − u0
∆x|(x)dx+ 3

¨
ΓTin

|ub − γu∆x| |v · n|dσdt

+ Cε(1 + PerΓT (ΓTin) + PerΓT (Eb) + PerΩ(E0)) + 2|µ∆x(uε)|+ 2|ν∆x(uε)|
(32)

Proof. We set w = 2u− 1 and wε = 2uε − 1. By subtracting the weak formulation for the exact solution (10)
from the weak formulation for the approximate solution (29) and chosing ϕ = wε, we obtain¨

ΩT
(u∆x − u)(∂twε + v · ∇xwε)dxdt+

ˆ
Ω

(u− u∆x)(T, x)wε(T, x)dx

+

¨
ΓTout

(γu− γu∆x)wε |v · n|dσdt =

ˆ
Ω

(u0 − u0
∆x)wε(0, x)dx

+

¨
ΓTin

(ub − γu∆x)wε |v · n|dσdt+ µ∆x(wε) + ν∆x(wε).

Since wε solves the transport equation with right-hand side 2gε (see Proposition 4.4), we can write
ˆ

Ω

(u− u∆x)(T, x)(2u− 1)(T, x)dx+

¨
ΓTout

(γu− γu∆x) (2γu− 1) |v · n|dσdt

= 2

ˆ
Ω

(u− u∆x)(T, x)(u− uε)(T, x)dx+ 2

ˆ
ΓTout

(γu− γu∆x) (γu− uε) |v · n|dσdt

− 2

¨
ΩT

(u∆x − u)gεdxdt+

ˆ
Ω

(u0 − u0
∆x)(2uε − 1)(0, x)dx

+

¨
ΓTin

(ub − γu∆x) (2uε − 1)v · ndσdt+ 2µ∆x(uε) + 2ν∆x(uε).
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By using (28) and (30) we get
ˆ

Ω

|u− u∆x|(T, x)dx+

¨
ΓTout

|γu− γu∆x| |v · n|dσdt

≤ 4‖u‖L∞(ΩT )

ˆ
Ω

|u− uε|(T, x)dx+ 4‖u‖L∞(ΩT )

¨
ΓTout

|γu− uε| |v · n|dσdt

+ 4‖u‖L∞(ΩT )‖gε‖L1(ΩT ) + 2

ˆ
Ω

|u0 − u0
∆x|dx+ 2

¨
ΓTin

|ub − γu∆x| |v · n|dσdt

+ 2|µ∆x(uε)|+ 2|ν∆x(uε)|.

Using Proposition 4.4 and Theorem 4.5, we get

E(u, u∆x, T ) ≤ C(PerΩ(E0) + PerΓT (Eb) + PerΓT (ΓTin) + 1)ε+ Cε‖u‖L1(0,T ;BV(Ω))

+

ˆ
Ω

|u0 − u0
∆x|dx+

¨
ΓTin

|ub − γu∆x| |v · n|dσdt+ 2|µ∆x(uε)|+ 2|ν∆x(uε)|.

The result follows from Theorem 2.5.

4.3 Estimate of the data approximation errors and of the weak formulation errors
We first analyse the size of the error terms related to the discretization of initial and boundary data.

Proposition 4.7. Under the same assumption as in Theorem 4.1, there exists a constant depending only on
Ω, v and α such that ˆ

Ω

|u0 − u0
∆x|(x)dx ≤ C(TVΩ(u0) + ‖u0‖L∞(Ω))∆x,

and ¨
ΓTin

|ub − γu∆x| |v · n|dσdt ≤ C
(
‖u‖L∞(ΩT ) + TVΓT (ub)

)√
∆x.

This result is proved in Section 6.1.
Using now the properties of the regularization uε we have already established, we can prove the following

estimate for the error terms of the numerical weak formulation µ∆x(uε) and ν∆x(uε).

Proposition 4.8. Under the same assuptions as in Theorem 4.1, there exists a constant C independent of u,
∆t, ∆x and ε such that

|µ∆x(uε)|+ |ν∆x(uε)| ≤ C

(√
D∆x(u∆x, T )

∆x

ε
+

∆x

ε

)√
‖u‖L∞(ΩT )

√
‖u‖L∞(ΩT ) + ‖u‖L1(0,T ;BV(Ω)).

The proof of this result is given in Section 6.2.
We have already proved in (26) that D∆x(u∆x, T ) is controlled by E∆x(u∆x, T ). It appears from Proposition

4.8 that we need now to prove that E∆x(u∆x, T ) is itself controlled by the L1-error that we are interested in.

Proposition 4.9. The total L2-energy balance term E∆x(u∆x, T ) is controlled by the L1-error at final time as
follows

E∆x(u∆x, T ) ≤ 2‖u‖L∞(ΩT )E(u, u∆x, T ). (33)

Proof. We add (12) to E∆x(u∆x, T ):

E∆x(u∆x, T ) =

ˆ
Ω

((u0
∆x)2 − (u0)2)(x)dx−

ˆ
Ω

(u2
∆x − u2)(T, x)dx−

¨
ΓT

(γu2
∆x − γu2) (v · n)dσdt

By the Jensen inequality, the first term ‖u0
∆x‖2L2 − ‖u0‖2L2 is nonpositive so that we immediately obtain

E∆x(u∆x, T ) ≤2‖u‖L∞(ΩT )

ˆ
Ω

|u∆x − u|(T, x)dx+ 2‖u‖L∞(ΩT )

¨
ΓT
|γu∆x − γu| |v · n|dσdt,

by using the definition of E(u, u∆x, T ).
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4.4 Conclusion of the proof of the main result
We may now gather the results obtained so far to conclude the proof of Theorem 4.2 and consequently of
Theorem 4.1 by the arguments developped in Section 4.1.

Hence, let u0 = 1E0 and ub = 1Eb , E0 and Eb being sets of finite perimeter, and ε > 0 fixed.

• Propositions 4.6 and 4.7 give

E(u, u∆x, T ) ≤ C(ε+
√

∆x)(1 + PerΓT (ΓTin) + PerΓT (Eb) + PerΩ(E0)) + 2|µ∆x(uε)|+ 2|ν∆x(uε)|.

• We use now the dissipation estimate (26), Proposition 4.8 and the BV regularity result (Theorem 2.5)
to get

E(u, u∆x, T ) ≤C(ε+
√

∆x)(1 + PerΓT (ΓTin) + PerΓT (Eb) + PerΩ(E0))

+
C√
λ

(√
E∆x(u∆x, T )

∆x

ε
+

∆x

ε

)√
1 + PerΓT (ΓTin) + PerΓT (Eb) + PerΩ(E0).

• Finally, with Proposition 4.9 we obtain

E(u, u∆x, T ) ≤C(ε+
√

∆x)(1 + PerΓT (ΓTin) + PerΓT (Eb) + PerΩ(E0))

+
C√
λ

(√
E(u, u∆x, T )

∆x

ε
+

∆x

ε

)√
1 + PerΓT (ΓTin) + PerΓT (Eb) + PerΩ(E0).

• We use now the Young inequality to deduce a bound on E(u, u∆x, T ) from the previous inequality

E(u, u∆x, T ) ≤ C
(
ε+
√

∆x+
∆x

ε

)
(1 + PerΓT (ΓTin) + PerΓT (Eb) + PerΩ(E0)).

It remains now to choose ε =
√

∆x to get the final estimate

E(u, u∆x, T ) ≤ C(1 + PerΓT (ΓTin) + PerΓT (Eb) + PerΩ(E0))
√

∆x.

5 Intermediate results concerning the regularization of the solution
This section is devoted to the proof of some intermediate results we used on the exact solution of the transport
equation, namely Proposition 2.4, Proposition 4.4 and Theorem 4.5.

5.1 Proof of Proposition 4.4
Let us first prove the following lemma.

Lemma 5.1. Let Ω be a bounded smooth domain in Rd. For any w ∈ BV(Ω) and any ε > 0 we have the
estimate ˆ

Ω

ˆ
B(0,1)

|w(x− 2εn(x)− εy)− w(x)|dydx ≤ CεTVΩ(w). (34)

Proof. Let us first assume that w ∈ C∞(Ω) and that ε is small enough so that 2ε‖n‖L∞(Ω) < 1. We can use
Fubini’s theorem and a change of variable to obtainˆ

Ω

ˆ
B(0,1)

|w(x− 2εn(x)− εy)− w(x)|dydx ≤
ˆ

Ω

ˆ
B(0,1)

ˆ 1

0

|∇w(x− sε(2n(x) + y)) · ε(2n(x) + y)|dsdydx

=

ˆ
B(0,1)

ˆ 1

0

ˆ
Ω

|∇w(x− sε(2n(x) + y)) · ε(2n(x) + y)|dxdsdy

≤ ε
2‖n‖L∞(Ω) + 1

1− 2ε‖Dxn‖L∞(Ω)

ˆ
B(0,1)

ˆ 1

0

ˆ
Ω

|∇w(x)|dxdsdy

≤ Cε
ˆ

Ω

|∇w(x)| dx.
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The claim follows by weak density of the set of smooth functions in BV(Ω).

We can now prove the proposition.

Proof of Proposition 4.4. The fact that uε solves a transport-like equation is a rather standard computation
(see for instance, the details in [Boy05]) and we simply give here the resulting source term

gε(t, x) =

ˆ
B(0,1)

u(t, x− 2εn(x)− εy)
v(t, x)− v(t, x− 2εn(x)− εy)

ε
· ∇ζ(y)dy

− 2

ˆ
B(0,1)

u(t, x− 2εn(x)− εy)v(t, x) ·Dxn(x)∇ζ(y)dy.

The L∞-bound on gε immediately follows from the assumptions (4) on v.
Observe now, by integration by parts with respect to the variable y, that we have

ˆ
B(0,1)

u(t, x)
v(t, x)− v(t, x− 2εn(x)− εy)

ε
· ∇ζ(y)dy =

1

ε

ˆ
B(0,1)

u(t, x)(divv)(t, x− 2εn(x)− εy)ζ(y)dy = 0,

since v is divergence free. Hence, we can rewrite gε as

gε(t, x) =

ˆ
B(0,1)

[
u(t, x− 2εn(x)− εy)− u(t, x)

]v(t, x)− v(t, x− 2εn(x)− εy)

ε
· ∇ζ(y)dy

−
ˆ
B(0,1)

[
u(t, x− 2εn(x)− εy)− u(t, x)

]
v(t, x) ·Dxn(x)∇ζ(y)dy.

By using the assumption on v and n, and (34) we immediately deduce

‖gε‖L1(ΩT ) ≤ Cε
ˆ T

0

TVΩ(u(t, .))dt ≤ Cε‖u‖L1(0,T ;BV(Ω)).

The estimate on ‖uε− u‖L∞(0,T ;L1(Ω)) is straightforward from Lemma 5.1, and the L∞-bound on uε comes
from the definition (31). Using similar computations as before, we find that

∇xuε(t, x) =

ˆ
B(0,1)

u(t, x− 2εn(x)− εy)− u(t, x)

ε
∇ζ dy − 2

ˆ
B(0,1)

u(t, x− 2εn(x)− εy)Dxn∇ζ dy,

and thus, by (34), we get

‖∇xuε‖L1((0,T )×Ω) ≤ C‖u‖L1(0,T ;BV(Ω)), and ‖∇xuε‖L∞((0,T )×Ω) ≤ C
‖u‖L∞((0,T )×Ω)

ε
.

The estimates on the time derivatives of uε simply follows from the equality ∂tuε = gε − v · ∇xuε, and the
bounds on gε and ∇xuε we just obtained.

5.2 Proofs of Proposition 2.4 and Theorem 4.5
We shall actually need a slightly more general result than the one in Proposition 2.4 that we state below. It
will be useful in the proof of Theorem 4.5 when we will need to analyse the trace of the regularization by
convolution of the solution of the transport equation.

Proposition 5.2. Under the same assumptions as the ones of Proposition 2.4, we have the following estimate
for any y ∈ B(0, 1), and any ξ ∈ (0, ξΩ),

¨
ΓTin

∣∣∣∣ub(t, x̃)− u
(
t, x̃− ξn(x̃) +

ξ

2
y

)∣∣∣∣ |v(t, x̃) · n(x̃)|dσ(x̃)dt ≤ C(TVΓT (ΓTin) + TVΓT (ub) + ‖u‖L∞)ξ.

Proposition 2.4 is nothing but the case y = 0 of the previous result.
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Proof. By the arguments exposed in Section 4.1, we see that we only need to deal with the case where
u0 = 1E0 and ub = 1Eb for some finite perimeter sets E0 ⊂ Ω and Eb ⊂ ΓT , so that in particular we can have
the bounds (28).

• We first prove that, for any E ⊂ ΓT of finite perimeter and any ξ < 2ξΩ/3, we have∣∣∣∣¨
E

(
γu(t, x̃)− u

(
t, x̃− ξn(x̃) +

ξ

2
y

))
(v(t, x̃) · n(x̃))dσ(x̃)dt

∣∣∣∣
≤ Cξ(1 + PerΓT E). (35)

Indeed, let (fn)n a sequence of smooth functions on ΓT that approximate 1E as in (6).

Since n is a unitary vector field, we easily see that, for any y ∈ B(0, 1), the map

Φy : (s, x̃) ∈ [0, 2ξΩ/3]× Γ 7→ x̃− sn(x̃) + (s/2)y,

is one to one into a subset of OξΩ and that

‖∇Φy‖L∞([0,2ξΩ/3]×Γ) + ‖∇(Φy)−1‖L∞(Im(Φy)) ≤ C,

for some C independent of y. Observe that

Φy({ξ} × Γ) = Γξ + (ξ/2)y,

which is just a translation of Γξ, so that in particular the normal field to the manifold Γξ + (ξ/2)y is the
translation of the normal field to Γξ.

We also define the open set
Oξ,y := Φy((0, ξ)× Γ),

that satisfies
Oξ,y ⊂ O3/2ξ.

Oξ,y

Γξ + ξ
2y

ξ

Γξ

Figure 4: Definition of Oξ,y for some ξ and y
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We introduce a test function ϕ defined in (0, T )×Oξ,y as follows (and extended by 0 on the whole domain
[0, T ]× Ω)

ϕ(t, x̃− sn(x̃) + (s/2)y) = fn(t, x̃), ∀s ∈ [0, ξ],∀(t, x̃) ∈ ΓT .

Using this test function in (10) is possible and makes appear a boundary term on Γξ,y. More precisely
we obtain the following formula (see [Boy05] for similar computations)

¨
ΓT
ϕ(t, x̃)γu(t, x̃) (v(t, x̃) · n(x̃))dσ(x̃)dt

−
ˆ T

0

ˆ
Γξ+(ξ/2)y

ϕ(t, x)u(t, x)(v(t, x) · nΓε+(ε/2)y(x))dσ(x)dt

= −
ˆ
Oξ,y

u0ϕ(0, .)dx+

ˆ
Oξ,y

u(T, .)ϕ(T, .)dx−
ˆ T

0

ˆ
Oξ,y

u(∂tϕ+ v · ∇ϕ)dxdt. (36)

– By definition of ϕ, the first integral in (36) just reads
¨

ΓT
fn(t, x̃)γu(t, x̃) (v(t, x̃) · n(x̃))dσ(x̃)dt,

whereas the second one can be expressed through the affine change of variable x 7→ x− ξ
2y as follows

ˆ T

0

ˆ
Γξ

fn(t, PΓx)u

(
t, x+

ξ

2
y

)(
v

(
t, x+

ξ

2
y

)
· n(x)

)
dσ(x)dt.

Using now the change of variable (7) in this integral leads to the expression
¨

ΓT
fn(t, x̃)u

(
t, x̃− ξn(x̃) +

ξ

2
y

)
J(ξ, x̃)

(
v

(
t, x̃− ξn(x̃) +

ξ

2
y

)
· n(x̃)

)
dσ(x̃)dt.

– The first two terms in the right-hand side of (36) can simply be bounded, since ‖ϕ‖L∞(ΩT ) ≤ 2, as
follows∣∣∣∣∣

ˆ
Oξ,y

u0ϕ(0, .)dx

∣∣∣∣∣+

∣∣∣∣∣
ˆ
Oξ,y

u(T, .)ϕ(T, .)dx

∣∣∣∣∣ ≤ 4|Oξ,y| ≤ 4|O3ξ/2| ≤ 6ξ|Γ|‖J‖L∞((0,ξΩ)×Γ).

– The last term in (36) is estimated as follows∣∣∣∣∣
ˆ T

0

ˆ
Oξ,y

u(∂tϕ+ v · ∇ϕ)dxdt

∣∣∣∣∣ ≤ (1 + ‖v‖L∞(ΩT ))

ˆ T

0

ˆ
Oξ,y
|∇t,xϕ|dxdt

≤ (1 + ‖v‖L∞(ΩT ))

ˆ T

0

ˆ
O3ξ/2

|∇t,xϕ|dxdt.

Using the definition of ϕ, the properties of Φy and the change of variable (7), we obtain that this
integral is bounded by

3

2
ξ(1 + ‖v‖L∞(ΩT ))‖J‖L∞([0,ξΩ]×Γ)‖∇Φ−1

y ‖L∞(Im(Φy))

¨
ΓT
|∇t,x̃fn|dσ(x̃)dt.

Gathering all those estimates, using that J(0, x̃) = 1 for any x̃ ∈ Γ and the fact that∣∣∣∣(v(t, x̃− ξn(x̃) +
ξ

2
y

)
· n(x̃)

)
J(ξ, x̃)− (v(t, x̃) · n(x̃))

∣∣∣∣ ≤ ‖v‖L∞(ΩT )LJξ +
3

2
ξLv,
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we finally obtain the bound∣∣∣∣¨
ΓT
fn(t, x̃)

(
γu(t, x̃)− u

(
t, x̃− ξn(x̃) +

ξ

2
y

))
(v(t, x̃) · n(x̃))dσ(x̃)dt

∣∣∣∣
≤ C(‖v‖L∞(ΩT )LJ+Lv)ξ+C‖J‖L∞([0,ξΩ]×Γ)|Γ|ξ+C(1+‖v‖L∞(ΩT ))‖J‖L∞([0,ξΩ]×Γ)ξ

(¨
ΓT
|∇t,x̃fn|dσ(x̃)dt

)
.

Passing to the limit as n→∞, we obtain∣∣∣∣¨
E

(
γu(t, x̃)− u

(
t, x̃− ξn(x̃) +

ξ

2
y

))
(v(t, x̃) · n(x̃))dσ(x̃)dt

∣∣∣∣ ≤ Cξ(1 + PerΓT (E)),

where C depends only on v and Ω.

• We first apply (35) to the set E+ = ΓTin ∩Eb. On this subset of ΓT , we have γu = ub = 1 so that we have∣∣∣∣¨
E+

(
1− u

(
t, x̃− ξn(x̃) +

ξ

2
y

))
(v(t, x̃) · n(x̃))dσ(x̃)dt

∣∣∣∣ ≤ Cξ(1 + PerΓT (E+)),

and since the function under the integral is non-positive almost everywhere (because u ≤ 1 and v ·n < 0
on ΓTin), we finally proved that

¨
E+

∣∣∣∣ub(t, x̃)− u
(
t, x̃− ξn(x̃) +

ξ

2
y

)∣∣∣∣ |v(t, x̃) · n(x̃)|dσ(x̃)dt ≤ Cξ(1 + PerΓT (E+)).

• Similarly, we apply (35) to the set E− = ΓTin ∩ (ΓT \ Eb). On this subset of ΓT we have γu = ub = 0 so
that we deduce∣∣∣∣¨

E−

(
0− u

(
t, x̃− ξn(x̃) +

ξ

2
y

))
(v(t, x̃) · n(x̃))dσ(x̃)dt

∣∣∣∣ ≤ Cξ(1 + PerΓT (E−)),

and since the function we integrate is of constant sign, we deduce that
¨
E−

∣∣∣∣ub(t, x̃)− u
(
t, x̃− ξn(x̃) +

ξ

2
y

)∣∣∣∣ |v(t, x̃) · n(x̃)|dσ(x̃)dt ≤ Cξ(1 + PerΓT (E−)).

• Adding the previous two inequalities and using that PerΓT (A ∩ B) ≤ PerΓT (A) + PerΓT (B) and that
PerΓT (ΓT \A) = PerΓT (A), we finally obtain

¨
ΓTin

∣∣∣∣ub(t, x̃)− u
(
t, x̃− ξn(x̃) +

ξ

2
y

)∣∣∣∣ |v(t, x̃) · n(x̃)|dσ(x̃)dt ≤ Cξ(1 + PerΓT (ΓTin) + PerΓT (Eb)).

We can now easily prove the error estimates between the traces γu and γuε.

Proof of Theorem 4.5. The estimate for the inflow boundary simply comes by integration of the inequality in
Proposition 5.2 with respect to y after multiplication by the kernel ζ(y) as follows

¨
ΓTin

|ub(t, x̃)− uε(t, x̃)| |v(t, x̃) · n(x̃)|dσ(x̃)dt

≤
ˆ
B(0,1)

¨
ΓTin

ζ(y)|ub(t, x̃)− u(t, x̃− 2εn(x̃) + εy)| |v(t, x̃) · n(x̃)|dσ(x̃)dtdy

≤ C(PerΓT (ΓTin) + TVΓT (ub) + ‖u‖L∞(ΩT ))ε.
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To obtain the estimate on the outflow boundary terms, we simply write the equation satisfied by |uε−u| (using
the renormalisation property in Theorem 2.2)

∂t|uε − u|+ v · ∂x|uε − u| = sign(uε − u)gε,

and we use the test function ϕ = 1 on this equation to obtain
ˆ

Ω

|uε − u|(T, .)dx+

¨
ΓTout

|uε − γu| |v · n|dσdt

=

ˆ
Ω

|uε − u|(0, .)dx+

¨
ΓTin

|uε − γu| |v · n|dσdt+

¨
ΩT

sign(uε − u)gεdxdt,

and thus
ˆ

Ω

|uε − u|(T, .)dx+

¨
ΓTout

|uε − γu| |v · n|dσdt

=

ˆ
Ω

|uε − u|(0, .)dx+

¨
ΓTin

|uε − γu| |v · n|dσdt+

¨
ΩT

sign(uε − u)gεdxdt.

Proposition 4.4 and the BV regularity property (Theorem 2.5) then gives
¨

ΓTout

|uε − γu| |v · n|dσdt ≤ C(PerΓT (ΓTin) + TVΓT (ub) + ‖u‖L∞(ΩT ))ε+ Cε‖u‖L1(0,T ;BV(Ω))

≤ C(TVΩ(u0) + TVΓT (ub) + PerΓT (ΓTin) + ‖u‖L∞(ΩT ))ε.

6 Intermediate results on the numerical scheme

6.1 Proof of Proposition 4.7
We start by proving the following approximation result.

Lemma 6.1. Let f ∈ BV(ΩT ) ∩ L∞(0, T, (W 1,∞(Ω))), a mesh of Ω and a time step ∆t as described above
and satisfying (14), (16) and (18). For any n and any K|L ∈ ∂T , we set

fnKL := �

¨
Kn|Ln

f dσdt.

1. For any ξ < ξΩ we have the estimate∑
0≤n<N

K|L∈∂T ext

¨
Kn|Ln

|f − fnKL|dσdt ≤ CLf |ΓT |(∆x+ ξ) + C
∆x

ξ
TV(0,T )×Oξ(f).

In particular, with ξ =
√

∆x and (13), we have∑
0≤n<N

K|L∈∂T ext

¨
Kn|Ln

|f − fnKL|dσdt ≤ C
√

∆x, (37)

with C depending only on the assumed regularity of f , Ω and the mesh regularity parameter α.

2. We have the following uniform bound∑
0≤n<N
K|L∈∂T

¨
Kn|Ln

|f − fnKL|dσdt ≤ C.
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Remark 6.2. If the trace of f on ΓT were in the space BV(ΓT ) then, with some additional regularity assumptions
on the mesh, we would have been able to improve the estimate (37) by a bound in O(∆x). However in general,
with the assumptions we made on f , we want to emphasize that the BV regularity of the trace does not hold.

Consider the following example with T = 1/2, Ω = (0, 1): Let φ : R → R be a smooth function such that
φ(0) = 1 and Supp(φ) ⊂ (−1, 1) and define f : ΩT → R as follows

f(t, x) =
sin(log t)

log t
φ(x log t), ∀(t, x) ∈ (0, 1/2)× (0, 1).

It is clear that f is continuous on ΩT , smooth in ΩT and that

|∂xf(t, x)| = | sin(log t)||φ′(x log t)| ≤ ‖φ′‖L∞ ,

so that f is uniformly Lipschitz continuous with respect to x. Then we can compute

∂tf(t, x) = − sin(log t)

t(log t)2
φ(x log t) +

cos(log t)

t log t
φ(x log t) + x sin(log t)φ′(x log t).

It follows that
ˆ

ΩT
|∂tf |dxdt =

ˆ 1/2

0

ˆ 1

0

|∂tf |dxdt ≤ ‖φ‖L1

ˆ 1/2

0

1

t(log t)2
+

1

t| log t|3
+

1

(log t)2
dt < +∞,

so that f ∈ BV(ΩT ). However, when one takes the trace of f at x = 0, we have

ˆ
ΓT
|∂tf |dt =

ˆ 1/2

0

|∂tf(t, 0)| dt ≥
ˆ 1/2

0

| cos(log t)|
t| log t|

dt−
ˆ 1/2

0

1

t(log t)2
dt = +∞,

which proves that the trace does not belong to BV(ΓT ).

Proof of Lemma 6.1. As usual, the proof is given for a smooth function f and the claim is finally obtained by
a standard density argument. For a given n and a given σ = K|L ∈ ∂T , we set σn = (tn, tn+1)×σ. Moreover,
we shall use the notation

Tn,σ :=

¨
σn

∣∣∣∣f −�¨
σn
f

∣∣∣∣ dσdt.
1. Here, we only consider exterior faces σ ∈ ∂T ext. With any such face we associate a volume Kξ,σ (that

has nothing to do with the mesh cells, see Fig. 5) defined through tangential and normal coordinates as
follows

Kξ,σ := {x̃− sn(x̃), x̃ ∈ σ, s ∈ (0, ξ)}.

By using the properties of those coordinates and the change of variable formula (7), we easily find that,
for some C > 0 depending only on the geometry of Ω, we havediam(Kξ,σ) ≤ C(∆x+ ξ),

1

C
|σ|ξ ≤ |Kξ,σ| ≤ C|σ|ξ.

(38)

We set Kn
ξ,σ = (tn, tn+1)×Kξ,σ and we observe that, thanks to the Lipschitz-continuity in space of f we

have, for any (t, y) ∈ σn∣∣∣∣∣f(t, y)−
 
Kξ,σ

f(t, x)dx

∣∣∣∣∣ ≤ Lfdiam(Kξ,σ) ≤ CLf (∆x+ ξ).
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σ

Kξ,σ

ξ

Figure 5: Illustration of the definition of Kξ,σ for some exterior face σ ∈ ∂T ext

By writing f =

(
f −

 
Kξ,σ

f(t, x)dx

)
+

 
Kξ,σ

f(t, x)dx in the definition of Tn,σ, it follows that

Tn,σ ≤ 2CLf (∆x+ ξ)∆t|σ|+ |σ|
ˆ tn+1

tn

∣∣∣∣∣
 
Kξ,σ

f(t, x)dx−�
¨
Kn
ξ,σ

f

∣∣∣∣∣ dt
≤ 2CLf (∆x+ ξ)∆t|σ|+ |σ|

 
Kξ,σ

ˆ tn+1

tn

(∣∣∣∣∣f(t, x)−
 tn+1

tn
f(s, x)ds

∣∣∣∣∣ dt
)
dx

≤ 2CLf (∆x+ ξ)∆t|σ|+ ∆t
|σ|
|Kξ,σ|

ˆ
Kξ,σ

ˆ tn+1

tn
|∂tf(t, x)|dtdx.

Finally, with the properties (38), we get

Tn,σ ≤ 2CLf (∆x+ ξ)∆t|σ|+ C
∆t

ξ

ˆ
Kξ,σ

ˆ tn+1

tn
|∂tf(t, x)|dtdx,

and by summation over n and σ, the first claim follows.

For proving (37) we simply bound the integral of |∂tf | over Ωξ by the same integral on the whole domain
Ω, and then we choose ξ =

√
∆t, with ∆t small enough so that the condition ξ < ξΩ is fulfilled.

2. Let K ∈ T be any cell in the mesh and σ = K|L any face of K. We can make the same computation as
before but replacing the set Kξ,σ by the actual cell K. We obtain

Tn,K|L ≤ 2CLfdiam(K)∆t|K|L|+ ∆t
|K|L|
|K|

¨
Kn

|∂tf(t, x)|dtdx.

Using (16) and (18), we deduce that∑
0≤n<N
K|L∈∂T

Tn,K|L ≤
2CLf
α

∑
0≤n<N
K∈T

∆t|K|+ C
∑

0≤n<N
K∈T

¨
Kn

|∂tf |dxdt

≤ 2CLfT |Ω|+
C

α2

¨
ΩT
|∂tf |dxdt.
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We may now go back to the proposition.

Proof of Proposition 4.7. To prove the first estimate, we assume that u0 is smooth. We write
ˆ

Ω

|u0 − u0
∆x| dx =

∑
K∈T ext

ˆ
K

|u0 − u0
K | dx+

∑
K∈T int

ˆ
K

|u− u0
K | dx.

We use the definition of u0
∆x in (19) and Lemma 3.2 on the interior terms, and we simply use L∞-bounds on

the exterior terms to obtainˆ
Ω

|u0 − u0
∆x|dx ≤ C

∑
K∈T ext

diam(K)

ˆ
K

|∇u0|dx+ 2‖u0‖L∞(Ω)

∑
K∈T ext

|K|

≤ C∆x

ˆ
Ω

|∇u0|dx+ C‖u0‖L∞(Ω)∆x.

The claim follows by the density property (6).
Let us consider now the second estimate.

• We first prove that
¨

ΓT
|ub − ub,∆x| dσdt ≤ C

(
‖ub‖L∞(ΓT ) + TVΓT (ub)

)√
∆x. (39)

By a standard convolution process similar to the one proposed in (31) but on ΓT , we may build a smooth
function uεb : ΓT → R such that

‖∇t,x̃uεb‖L∞(ΓT ) ≤
C

ε
‖ub‖L∞(ΓT ), ‖ub − uεb‖L1(ΓT ) ≤ CεTVΓT (ub).

Since uεb is Lipschitz continuous we immediately see that, by definition of uεb,∆x (see (19)), we have

‖uεb − uεb,∆x‖L1(ΓT ) ≤ C‖∇t,x̃uεb‖L∞(ΓT )(∆t+ ∆x) ≤ C

ε
‖ub‖L∞(ΓT )(∆t+ ∆x).

Moreover, we have

‖ub − uεb − (ub,∆x − uεb,∆x)‖L1(ΓT ) ≤ 2‖ub − uεb‖L1(ΓT ) ≤ CεTVΓT (ub).

Combining the two inequalities, and using the triangle inequality, we find

‖ub − ub,∆x‖L1(ΓT ) ≤
C

ε
‖ub‖L∞(ΓT )(∆t+ ∆x) + CεTVΓT (ub),

and the claim follows by (18) and by chosing ε =
√

∆x. Note that, with additional regularity assumptions
on the mesh, one can prove a stronger estimate in ∆x instead of

√
∆x but this is useless for our purpose.

• We define v = v ·n, where n is the smooth extension of the unit outward normal field introduced in 1.3.
This function v satisfies the same regularity assumptions as v. We denote by v∆x the piecewise constant
function

v∆x(t, x) = �

¨
Kn|Ln

v = V nKL if ∀t ∈ (tn, tn+1),∀x ∈ K|L ∈ ∂T ,

and we set
ΓTin,app :=

{
(t, x) ∈ ΓT , v∆x(t, x) < 0

}
=

⋃
n<N

σn∈∂T n−

σn.

The difficulties come from the fact we have neither ΓTin,app ⊂ ΓTin nor ΓTin ⊂ ΓTin,app.
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However, we observe that |v · n| = −(v · n) on ΓTin, so that we can write
¨

ΓTin

|ub − γu∆x| |v · n|dσdt =−
¨

ΓTin

|ub − γu∆x|(v · n− v∆x)dσdt

−
¨

ΓTin

|ub − γu∆x|v∆xdσdt.

In the first term we simply bound ub and γu∆x by ‖u‖L∞(ΩT ). For the second integral, we use that
v∆x ≥ 0 on ΓTin \ ΓTin,app to write

−
¨

ΓTin

|ub − γu∆x|v∆xdσdt ≤−
¨

ΓTin∩ΓTin,app

|ub − γu∆x|v∆xdσdt ≤ ‖v‖∞
¨

ΓTin,app

|ub − γu∆x|dσdt

=‖v‖∞
¨

ΓTin,app

|ub − ub,∆x|dσdt

≤‖v‖∞
¨

ΓT
|ub − ub,∆x|dσdt.

We have used here the fact that, by definition of the scheme (21), the trace of the approximate solution
γu∆x on the set ΓTin,app is given by ub,∆x. We have thus proved

¨
ΓTin

|ub − γu∆x||v · n|dσdt ≤ 2‖u‖L∞(ΩT )

¨
ΓT
|v − v∆x|dσdt+ ‖v‖∞

¨
ΓT
|ub − ub,∆x|dσdt.

Using the first point of Lemma 6.1 for the function v, the CFL condition (22) and the previous estimate
(39), we finally obtain

¨
ΓTin

|ub − γu∆x||v · n|dσdt ≤ C
(
‖u‖L∞(ΩT ) + TVΓT (ub)

)√
∆x.

6.2 Results concerning the approximate weak formulation
Proof of Proposition 4.8. The Cauchy–Schwarz theorem yields

|µ∆x(uε)| =

∣∣∣∣∣∣∣
∑

0≤n<N
K∈T

|K|(un+1
K − unK)

(
�

¨
Kn

uε(s, x)− uε(tn+1, x)dxds

)∣∣∣∣∣∣∣
≤
√
D∆x(u∆x, T )

 ∑
0≤n<N
K∈T

|K|
(
�

¨
Kn

(
uε(s, x)− uε(tn+1, x)

)
dsdx

)2


1/2

.

Similarly, the term ν∆x(uε) term can be rewritten as

ν∆x(uε) =
∑

0≤n<N
K∈T

∑
L∈∂Kn

−

∆t(unL − unK)
∣∣K|L∣∣ tn+1

tn
V nKL

( 
K

uεdx−
 
K|L

uεdσ

)
ds

+
∑

0≤n<N
K∈T

∑
L∈∂Kn

−

∆t(unL − unK)
∣∣K|L∣∣�¨

Kn|Ln
uε(V

n
KL − v · nKL)dσds
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and thus

|ν∆x(uε)| ≤
√
D∆x(u∆x, T )

 ∑
0≤n<N
K∈T

∑
L∈∂Kn

−

∆t

 tn+1

tn

∣∣K|L∣∣|V nKL|
( 

K

uεdx−
 
K|L

uεdσ

)2


1/2

+ 2‖u‖∞
∑

0≤n<N
K∈T

∑
L∈∂Kn

−

∆t
∣∣K|L∣∣�¨

Kn|Ln
|uε||V nKL − v · nKL|dσds.

The claim is thus a consequence of the following two Lemmas 6.3 and 6.4.

Lemma 6.3. Under the same assumptions as in Theorem 4.1, there exists a C > 0 depending only on α and v
such that ∣∣∣∣∣∣∣

∑
0≤n<N
K∈T

∑
L∈∂Kn

−

∆t
∣∣K|L∣∣�¨

Kn|Ln
uε(V

n
KL − v · nKL)dσds

∣∣∣∣∣∣∣ ≤ C
∆x

ε
‖u‖L∞(ΩT ). (40)

Proof. By definition of V nKL, the function V nKL − (v · nKL) has a zero average on Kn|Ln, therefore we can
replace uε by uε −

(
�̃
Kn|Ln uε

)
in each term, and since uε is Lipschitz continuous, this quantity is bounded

by (∆t+ ∆x)‖∇t,xuε‖L∞(ΩT ). It follows that∣∣∣∣∣∣∣
∑

0≤n<N
K∈T

∑
L∈∂Kn

−

∆t
∣∣K|L∣∣�¨

Kn|Ln
uε(V

n
KL − v · nKL)dσds

∣∣∣∣∣∣∣
≤ (∆t+ ∆x)‖∇t,xuε‖L∞(ΩT )

 ∑
0≤n<N
K|L∈∂T

∆t
∣∣K|L∣∣�¨

Kn|Ln
|V nKL − v · nKL|dσds

 ≤ C∆x

ε
‖u‖L∞(ΩT ),

where we have used (18), Proposition 4.4 and the second point of Lemma 6.1.

Lemma 6.4. Under the same assumptions as in Theorem 4.1, there exists a C > 0 depending only on α, v
and the geometry such that

∑
0≤n<N
K∈T

∑
L∈∂Kn

−

∆t

 tn+1

tn

∣∣K|L∣∣V nKL
( 

K

uεdx−
 
K|L

uεdσ

)2

≤ C‖u‖L1(0,T ;BV(Ω))‖u‖∞
∆x

ε
+ C‖u‖2L∞(ΩT )

∆x2

ε2
, (41)

and ∑
0≤n<N
K∈T

|K|
(
�

¨
Kn

(
uε(t, x)− uε(tn+1, x)

)
dxdt

)2

≤ C‖u‖L1(0,T ;BV(Ω))‖u‖∞
∆t

ε
. (42)

Proof. Let us denote by Tint (resp. Text) the sum of the contributions of interior (resp. exterior) cells in the
left-hand side of (41).
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Since the interior cells are polyhedral and convex, we can use Lemma 3.1 as follows

Tint :=
∑

0≤n<N
K∈T int

∑
L∈∂Kn

−

∆t

 tn+1

tn

∣∣K|L∣∣V nKL
( 

K

uεdx−
 
K|L

uεdσ

)2

≤C
∑

0≤n<N
K∈T int

∑
L∈∂Kn

−

∆t

 tn+1

tn

∣∣K|L∣∣V nKL diam(K)

|K|L|

ˆ
K

|∇xuε|2dx

≤C‖v‖∞∆x
∑

0≤n<N
K∈T int

∑
L∈∂Kn

−

¨
Kn

|∇xuε|2dxdt

By using (15), and Proposition 4.4, we get

Tint ≤
C

α
∆x

ˆ T

0

ˆ
Ω

|∇xuε|2dxdt ≤ C
∆x

α
‖∇xuε‖L1(ΩT )‖∇uε‖L∞(ΩT ) ≤ C

∆x

ε
‖u‖L∞(ΩT )‖u‖L1(0,T ;BV(Ω)).

We can now estimate as follows the contribution of the exterior cells without using Lemma 3.1 (since they may
be curved and not convex)

Text :=
∑

0≤n<N
K∈T ext

∑
L∈∂Kn

−

∆t

 tn+1

tn

∣∣K|L∣∣V nKL
( 

K

uεdx−
 
K|L

uεdσ

)2

≤C‖v‖L∞(ΩT )

∑
0≤n<N
K∈T ext

∑
L∈∂Kn

−

∆t
∣∣K|L∣∣(diam(K))2‖∇xuε‖2L∞(ΩT ).

By using first (14) and then (15), we deduce

Text ≤
C

αd
‖∇xuε‖2L∞(ΩT )

∑
0≤n<N
K∈T ext

∑
L∈∂K

∆t|K|diam(K)

≤ C∆x

αd+1
‖∇xuε‖2L∞(ΩT )

∑
0≤n<N
K∈T ext

∆t|K|

≤ CT∆x

αd+1
‖∇xuε‖2L∞(ΩT )

∣∣∣∣∣ ⋃
K∈T ext

K

∣∣∣∣∣ .
By definition of the exterior cells, we have

⋃
K∈T ext K ⊂ O∆x, and thus, with Proposition 4.4, we get

Text ≤
CT |Γ|∆x2

αd+1ε2
‖u‖2L∞(ΩT ).

To prove the estimate (42), we simply use the Jensen inequality, the inequality (17) and finally Proposition
4.4, as follows ∑

0≤n<N
K∈T

|K|
(
�

¨
Kn

(
uε(s, x)− uε(tn+1, x)

)
dsdx

)2

≤
∑

0≤n<N
K∈T

ˆ
K

∣∣∣∣∣
 tn+1

tn
(uε(t, x)− uε(tn+1, x))dt

∣∣∣∣∣
2

dx

≤ ∆t
∑

0≤n<N
K∈T

¨
Kn

|∂tuε(t, x)|2dxdt

≤ ∆t‖∂tuε‖L∞(ΩT )‖∂tuε‖L1(ΩT )

≤ C∆t

ε
‖u‖L∞(ΩT )‖u‖L1(0,T ;BV(Ω)).
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7 BV regularity of solutions to transport problems
The aim of this final section is to prove the BV regularity of the exact solution of the linear transport prob-
lem (1), that is to prove Theorem 2.5.

The main reference concerning the existence of a solution with bounded total variation to a conservation
law on a bounded domain is the very famous paper by Bardos, Leroux and Nédélec [BlRN79]. Their approach
have recently been revisited in [CR15], making the case of nonhomogenous boundary conditions more rigorous.
Those two papers deal with a framework that is far more general than the linear advection equation we consider
here. However, the regularity assumption on the boundary data which is required in both cases is very strong
(with our notation it would amount to require that, at least, ub ∈ C3([0, T ]×Γ)). Therefore, it cannot directly
be applied to the case where ub is a BV function as needed in our proof of the error estimate (we recall that
we used this theorem with characteristic functions of finite perimeter sets as initial and boundary data).

For this reason, we present here a proof of the BV regularity of the solution of the linear transport equation
assuming only that the initial and boundary data are themselves bounded and with bounded variation, that
is (2) and (3). Actually, we will prove a slightly stronger result since the only assumptions we shall need for v
are the following

v ∈ L∞(ΩT ), and Lv := ‖∇xv‖L∞(ΩT ) < +∞. (43)

In particular we shall not assume that v is divergence free.

Remark 7.1. We would like to mention again that the previous result may fail if we only assume that ub has
only bounded variation on the inflow part ΓTin of the boundary and not on the whole boundary ΓT , see the
counter-example given in Remark 2.7.

7.1 Sketch of proof
The proof is basically split into two parts. In the first part, we prove the result in the case where Ω is a
half-space and u0, ub are compactly supported. The strategy is very close in spirit than the one in [CH99]
with a treatment of the boundary similar to [OV06] (but less technical since we use a cartesian grid). For
this reason we may omit some straightforward computations and details. In the second part we recover the
complete result by usual localisation arguments and change of variables that are detailed in Section 7.4.

From now on, and until we reach Section 7.4, we assume that Ω = {(x1, . . . , xd) ∈ Rd : xd > 0}, so that
Γ = Rd−1×{0} and we choose a final time T > 0. In order to prove the BV regularity of the exact solution in
this setting, we shall prove a discrete BV bound for the approximate solution given by the upwind scheme (20)
posed on a uniform cartesian grid of Ω. Using such a grid is crucial for it is well known that the uniform
discrete BV bound doest not hold on a general grid for such approximations (see the counterexample given by
Desprès [Des04a]).

However, on a uniform cartesian grid, we shall obtain the uniform discrete BV estimate and the BV
estimate for the exact solution will follow since the approximate solution given by the upwind scheme is known
to converge in C0([0, T ], L1(Ω)) towards the exact solution of the transport problem (see [Boy11] for instance).

7.2 Notations
For a given N ≥ 1, we set ∆t = T/N and then we decide to choose

∆x := 2d‖v‖∞∆t, (44)

so that the CFL condition will be automatically satisfied. Since we use a uniform cartesian grid, we can use
adapted notation based on a multi-indices. We refer to Figure 6.

• The cells in T are given by

K := (k1∆x, (k1 + 1)∆x)× · · · × (kd∆x, (kd + 1)∆x), with (k1, ..., kd) ∈ Zd−1 × N.
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K = (0, 0)K = (−1, 0) K = (1, 0)

K = (0, 1)

K = (0,−1)

∆x

∆x

Ω

Γ

interior cells in T int

kd ≥ 1

exterior cells in T ext

kd = 0

virtual cells in T ∗
kd = −1

Figure 6: Notations for the cartesian mesh

• We identify each cell K with the corresponding multi-index (k1, ..., kd) in such a way that the neighboring
cells of K can be described by

K + ei, i ∈ {−d, . . . , d} \ {0},
where e1, ..., ed are the vectors of the canonical basis of Rd, and e−i = −ei. Conventionally we set e0 = 0,
so that K + ei = K for i = 0.

• The interior and exterior meshes are given by

T int = {K = (k1, . . . , kd), such that kd ≥ 1}, T ext = {K = (k1, . . . , kd), such that kd = 0},

and the virtual cells needed to deal with the boundary data are simply defined, by extension, as follows

T ∗ := {K = (k1, . . . , kd), such that kd = −1},

Even if v is not divergence free, we can use the same upwind scheme (20)-(21) to compute a convergent
approximation of the transport problem (see [Boy11]).

Using the particular geometry of the mesh, we can rewrite the scheme under the more compact form

un+1
K = unK +

∑
−d≤i≤d

anK,K+ei(u
n
K+ei − u

n
K), (45)

where the coefficient anK,K+ei
is defined as follows: anK,K = 0 and for i ∈ {−d, . . . , d} \ {0}, n < N , we set

anK,K+ei :=

{
−∆t

∆xV
n
K,K+ei

if VK,K+ei < 0,

0 otherwise.

We recall that

V nK,K+ei :=
1

∆xd−1∆t

ˆ (n+1)∆t

n∆t

ˆ
K|K+ei

v(t, x) · nK,K+ei dσ(x)dt,

where K|K + ei is the common face to the cells K and K + ei, and nK,K+ei = ei is the normal vector to this
face, oriented outward of K. We also set V nK,K = 0 and

unK = unb,K|K+ed
:=

1

∆xd−1∆t

ˆ (n+1)∆t

n∆t

ˆ
L|L+ed

ub(t, x)dσ(x)dt, ∀K ∈ T ∗,∀n < N. (46)
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Observe that, the value of unK = unb,K|K+ed
with K ∈ T ∗ only appears in the scheme if VK+ed,K < 0 (or

equivalently if aK+ed,K > 0). However, all the values of unb,K|K+ed
will come up in the BV estimate, in

particular in the terms introduced in Definition 7.2.
To simplify some computations, we shall define values of the approximate solution outside the extended

mesh T ∪ T ∗ as follows
unK+e−d

:= unK , ∀K ∈ T ∗,∀n < N. (47)

This convention simply allows to deal, without particular care, with quantities like unK+ej
− unK for any j ∈

{−d, . . . , d} and any K ∈ T ∪ T ∗, even for K ∈ T ∗ and j = −d.
Our aim is to evaluate the total variation of the numerical solution at any time tn. To this end, we shall

need special notations to deal with jumps of the solution or of its trace across faces.

Definition 7.2. • For any n < N and any K ∈ T , we define
QnK :=

∑
−d≤j≤d

|unK − unK+ej |,

BnK := 0.

• For any n < N and any K ∈ T ∗, we define
QnK := |unK − unK+ed

|,

BnK := |un+1
K − unK |+

∑
−d<j<d

|unK − unK+ej |.

• For any n < N , we set 
Qn :=

∑
K∈T ∪T ∗

QnK ,

Bn :=
∑

K∈T ∪T ∗
BnK =

∑
K∈T ∗

BnK .

Observe that the indices j = ±d do not enter the definition of BnK .
Remark 7.3. The contribution of the virtual cells in Qn can also be written∑

K∈T ∗
QnK =

∑
K∈T ext

|unK − unK+e−d
|.

All the terms QnK contain values produced by the numerical scheme and that need to be evaluated whereas
all the terms in BnK contain only values of the boundary data that are given, and in particular we have the
following bound

Lemma 7.4. There exists a C > 0 independent of ∆t and ∆x such that

∆xd−1
∑

n<N−1

Bn ≤ C TVΓT (ub).

Proof. Let n < N − 1 and K ∈ T ∗. By using Lemma 1.1 to the function ub, as well as the definition (46), we
get

BnK ≤
1

∆xd−1
TV(tn,tn+2)×(K|K+ed)(ub) +

1

∆xd−2∆t

∑
−d<j<d

TV
(tn,tn+1)×

(
(K|K+ed)∪(K+ej |K+ej+ed)

)(ub).
The claim follows by summation of those inequality and thanks to (44).

Remark 7.5. We shall use at different point the fact that∑
−d≤j≤d

|unK − unK+ej | ≤ B
n
K +QnK , ∀n < N,∀K ∈ T ∪ T ∗. (48)
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Let us be more precise on the claim we are going to prove: we would like to find a bound on the total
variation of u∆x(tN−1, .) and on the L1 norm of the difference between the trace of the approximate solution
and the discretisation of the boundary data at time tN−1. We thus define, for any n,

Vn = TVΩ(u∆x(tn, .)) + ‖γu∆x(tn, .)− ub,∆x(tn, .)‖L1(Γ), (49)

and the goal is to bound VN−1. A simple computation shows that the first term is the sum of contributions of
the jumps of the function across interior faces

TVΩ(u∆x(tn, .)) =
∑

K|L∈∂T int

∣∣K|L∣∣|unK − unL|,
and that the second term is given by

‖γu∆x(tn, .)− ub,∆x(tn, .)‖L1(Γ) =
∑
K∈T ∗

|K|K + ed||unK − unK+ed
| =

∑
K∈T ∗

|K|K + ed||unK − unb,K|K+ed
|.

It follows, by replacing sums over all the faces by sums over all the cells, that we have

Vn =
∆xd−1

2
Qn,

and thus we will now work on obtaining a bound on Qn for any n. The coefficient 2 above comes from the fact
that, in the definition of Qn, each face is counted twice.

We shall need to estimate the initial value V0 as follows.

Lemma 7.6. There exists a C > 0 such that

V0 ≤ TVΩ(u0) + ‖γΓu
0 − ub(0, .)‖L1(Γ) + C(TVO∆x

(u0) + TV(0,∆t)×Γ(ub)),

where ub(0, .) is the usual notation for the trace γ{0}×Γub as defined in the introduction.

Proof. The bound of the first term simply follows by summing the inequalities given by Lemma 1.1 applied to
f = u0, R = h = ∆x and to two neighboring cells K and K + ej .

Let us now study the second term in TV 0.

• By using Lemma 1.1 and the definition of the trace, we have
ˆ
Rd−1

∣∣∣∣∣γΓu
0(y)− 1

∆x

ˆ ∆x

0

u0(y, xd)dxd

∣∣∣∣∣ ≤ TVO∆x(u0). (50)

• Then for any exterior face σ = [k1∆x, (k1 + 1)∆x) × · · · × [kd−1∆x, (kd−1 + 1)∆x) and the associated
exterior cell K = [k1∆x, (k1 + 1)∆x)× · · · × [kd−1∆x, (kd−1 + 1)∆x)× [0,∆x) ∈ T ext, we have

ˆ
σ

∣∣∣∣∣ 1

∆x

ˆ ∆x

0

u0(y, xd)dxd −
 
K

u0dx

∣∣∣∣∣ dy ≤ TVK(u0).

By summation over the faces in ∂T ext and by using (50)

‖γΓu
0 − γu0

∆x‖L1(Γ) ≤ 2TVO∆x(u0).

• Similarly, we can deal with the trace at time t = 0 of ub and prove that

‖ub(0, .)− ub,∆x(0, .)‖L1(Γ) ≤ 2TV(0,∆t)×Γ(ub).

Actually, a careful analysis of all the above computations, show that

V0 −−−−→
∆t→0

TVΩ(u0) + ‖γΓu
0 − ub(0, .)‖L1(Γ). (51)
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7.3 Proof of the BV estimate in the cartesian setting
We can now move to the proof of our regularity result for a domain which is a half-space. More precisely, we
shall prove the following result.

Proposition 7.7. There exists a C > 0 that does not depend on ∆t,∆x such that

Vn+1 ≤ (1 + C∆t)Vn + C∆xd−1Bn, ∀n ∈ {0, ..., N − 2}. (52)

From this result we easily deduce our BV estimate.

Theorem 7.8. Assume that Ω = Rd−1 × (0,+∞), that u0 satisfies (2), ub satisfies (3) and v satisfies (43).
Then, the unique solution u of the transport problem (1) satisfies

sup
t∈[0,T ]

TVΩ(u(t, .)) ≤ C(‖γΓu
0 − ub(0, .)‖L1(Γ) + TVΩ(u0) + TVΓT (ub)),

where C > 0 depends only on T and v.

Proof. From (52) and the discrete Gronwall lemma we obtain

sup
n<N
Vn ≤ C

(
V0 +

∑
n<N−1

∆xd−1Bn

)
.

Using the bounds on the data given by Lemmas 7.4 and 7.6 we obtain

sup
n<N
Vn ≤ C(‖γΓu

0 − ub(0, .)‖L1(Γ) + TVΩ(u0) + TVΓT (ub)).

By the definition (49) of Vn, and since u∆x is piecewise constant in time, we deduce that

sup
t∈[0,T )

TVΩ(u∆x(t, .)) ≤ C(‖γΓu
0 − ub(0, .)‖L1(Γ) + TVΩ(u0) + TVΓT (ub)).

We use now the convergence result given in [Boy11], which says that u∆x −−−−→
∆t→0

u in C0([0, T ], L1(Ω)) to obtain

the claim, by the semi-continuity property (5). Observe that the convergence result in [Boy11] is only given
on a bounded domain and for the implicit scheme, but it can be adapted immediately to the explicit scheme
under the CFL condition. Moreover, when dealing with compactly supported data the proposed analysis is
valid on an unbounded domain. This proves the claim.

It remains to establish Proposition 7.7.
The first lemma below only depends on regularity property of the velocity field v.

Lemma 7.9. For all K ∈ T ∪ T ∗, we have

|aK,K+ei − aK+ej ,K+ej+ei | ≤ Lv∆t, ∀i, j ∈ {−d, . . . , d}, (53)

and ∣∣∣∣∣∣
∑
−d≤i≤d

anK,K+ei −
∑
−d≤i≤d

anK−ei,K

∣∣∣∣∣∣ ≤ ‖divv‖L∞(ΩT )∆t ≤ CLv∆t. (54)

The proof is omitted since it simply uses the assumption on v, the conservativity of the fluxes and the
Stokes formula.

The main idea of the proof of Proposition 7.7 consists in using the definition of the scheme (45) to express
the jump terms in Qn+1 by the same kind of terms at time tn. The main issue here is that the values un+1

K for
K ∈ T ∗ do not satisfy the scheme since they are explicitly defined by the boundary data by (46).
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We thus define, for n < N and K ∈ T ∪ T ∗, the quantity

RnK :=

{
0, if K ∈ T ,
un+1
K − unK −

∑
−d≤j≤d a

n
K,K+ej

(unK+ej
− unK), if K ∈ T ∗,

in such a way that we have now the following equality for any n < N and any K ∈ T ∪ T ∗

un+1
K = unK +

∑
−d≤j≤d

anK,K+ej (u
n
K+ej − u

n
K) +RnK . (55)

Thanks to the choice (44) and to the definition of the coefficients anK,L we immediately see that, under the
CFL condition (22), we have the bound

|RnK | ≤ |BnK |+ aK,K+ed |unK+ed
− unK |, ∀K ∈ T ∗,∀n. (56)

We may now find a suitable expression of the jump between the values on two neighboring cells at time
tn+1 as a function of similar quantities at time tn as follows.

Lemma 7.10. For all K ∈ T , n < N and −d ≤ j ≤ d, we have

un+1
K − un+1

K+ej
= (unK − unK+ej )

1−
∑
−d≤i≤d

anK,K+ei

+
∑
−d≤i≤d

anK,K+ei(u
n
K+ei − u

n
K+ei+ej )

+
∑
−d≤i≤d

(anK,K+ei − a
n
K+ej ,K+ej+ei)(u

n
K+ej+ei − u

n
K+ej ) +RnK −RnK+ej .

The detailed proof is omitted; it just consists in writing subtracting formula (55) for K from the one for
K + ej and reorganizing the terms.

We use now the CFL condition (44) and the definition of the coefficient anK,L to get, in particular, that1−
∑
−d≤i≤d

anK,K+ei

 ≥ 0, ∀K ∈ T ,∀n < N,

so that we can take the absolute values in the formula given by Lemma 7.10 to get

|un+1
K − un+1

K+ej
| ≤ |unK − unK+ej |

1−
∑
−d≤i≤d

anK,K+ei

+
∑
−d≤i≤d

anK,K+ei |u
n
K+ei − u

n
K+ei+ej |

+
∑
−d≤i≤d

|anK,K+ei − a
n
K+ej ,K+ej+ei ||u

n
K+ej+ei − u

n
K+ej |+ |R

n
K |+ |RnK+ej |.

The last two terms are estimated by (56), whereas the first term of the second line is controlled by (48) and
(53). By summing this inequality over K ∈ T and j ∈ {−d, . . . , d} on the one hand and over K ∈ T ext, with
j = −d on the other hand (we use here Remark 7.3), we obtain

Qn+1 ≤
∑
K∈T

∑
−d≤j≤d

|unK − unK+ej |

1−
∑
−d≤i≤d

anK,K+ei

+
∑
−d≤i≤d

anK,K+ei |u
n
K+ei − u

n
K+ei+ej |


+

∑
K∈T ext

|unK − unK+e−d
|

1−
∑
−d≤i≤d

anK,K+ei

+
∑
−d≤i≤d

anK,K+ei |u
n
K+ei − u

n
K+ei+e−d

|


+ C∆x(Qn +Bn) +

∑
K∈T ∗

anK,K+ed
|unK+ed

− unK |.

(57)

We have now to make a change of index K + ei → K in the terms of the form anK,K+ei
|unK+ei

− unK+ei+ej
|

in the first two lines. It is needed of course to take care of the boundary terms. By straightforward algebraic
manipulations we get the following lemmas.
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Lemma 7.11 (Change of indices on the whole mesh).∑
K∈T

∑
−d≤j≤d

∑
−d≤i≤d

anK,K+ei |u
n
K+ei − u

n
K+ei+ej | ≤

∑
K∈T

∑
−d≤j≤d

∑
−d≤i≤d

anK−ei,K |u
n
K − unK+ej |

+
∑

K∈T ext

anK,K−ed |u
n
K − unK−ed | −

∑
K∈T ext

anK−ed,K |u
n
K+ed

− unK |

+ CBn.

Lemma 7.12 (Change of indices for boundary terms).∑
K∈T ext

∑
−d≤i≤d

anK,K+ei |u
n
K+ei − u

n
K+ei+e−d

| =
∑

K∈T ext

∑
−d≤i≤d

anK−ei,K |u
n
K − unK+e−d

|

+
∑

K∈T ext

anK,K+ed
|unK+ed

− unK | −
∑

K∈T ext

anK+ed,K
|unK−ed − u

n
K |

−
∑

K∈T ext

anK−ed,K |u
n
K − unK−ed |.

Using the previous two lemmas with (57) and using the property (54), we finally obtain

Qn+1 ≤(1 + C∆t)Qn + C(1 + ∆t)Bn

+
∑
K∈T ∗

anK,K+ed
|unK+ed

− unK |+
∑

K∈T ext

anK,K−ed |u
n
K − unK−ed | −

∑
K∈T ext

anK−ed,K |u
n
K+ed

− unK |

+
∑

K∈T ext

anK,K+ed
|unK+ed

− unK | −
∑

K∈T ext

anK+ed,K
|unK−ed − u

n
K | −

∑
K∈T ext

anK−ed,K |u
n
K − unK−ed |.

With a simple change of indices, we observe that∑
K∈T ∗

anK,K+ed
|unK+ed

− unK | =
∑

K∈T ext

anK−ed,K |u
n
K − unK−ed |,

so that we can gather all the terms as follows

Qn+1 ≤(1 + C∆t)Qn + C(1 + ∆t)Bn

+
∑

K∈T ext

(anK,K−ed − a
n
K+ed,K

)|unK − unK−ed |+
∑

K∈T ext

(anK,K+ed
− anK−ed,K)|unK+ed

− unK |,

and using once again (53) and (48), we obtain

Qn+1 ≤ (1 + C∆t)Qn + CBn + C ′∆t(Qn +Bn),

which implies the claimed estimate by multiplying the inequality by ∆xd−1. The proposition is proved, and
so is the BV regularity theorem in the half-space case.

7.4 Proof of Theorem 2.5
Let us denote by Ω0 = Rd−1 × (0,+∞) the reference half-space we introduced in the previous section and by
Γ0 = Rd−1 × {0} its boundary.

• The first step of the proof consists in considerng the case where Ω has the following form

Ω = {x ∈ Rd, xd > S(x1, ..., xd−1)}, (58)

where S : Rd−1 → R is a C3 and compactly supported parametrization of the boundary Γ.
We can then build a C2 diffeomorphism Ψ : Rd → Rd that maps Ω0 onto Ω and such that, for some
ξΩ > 0 we have

Φ(x̄, xd) = (x̄, S(x̄))− xd n(x̄, S(x̄)), ∀x̄ ∈ Rd−1,∀xd ∈ (0, ξΩ).
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where n is the outward unit vector field of the domain Ω. With this change of variable we can set

w(t, x) := u(t,Ψ(x)), ∀t ∈ (0, T ),∀x ∈ Ω0,

and prove that w solves a transport problem in Ω0 with initial data w0(x) = u0(Ψ(x)), boundary data
wb(t, x) = ub(t,Ψ(x)) and the advection field v0 defined by

v0(t, x) = [(∇Ψ)(x)]
−1

v(t,Ψ(x)), ∀t ∈ (0, T ),∀x ∈ Ω0.

The regularity of Ψ shows that v0 inherits the regularity properties of v (it is however not divergence
free in general), and moreover the change of variable we used maps the inflow part of the boundary for v0

onto the inflow part of the boundary for v. Theorem 7.8 then gives an estimate of w in L∞(0, T,BV(Ω0))
depending on the total variations of w0 and wb. Coming back to u by the change of variable gives the
corresponding estimate on u.

• Let us now prove the claim on a general bounded C3 domain. We first introduce a finite covering of
Ω = ∪1≤i≤IΩ ∩B(xi, r) in such a way that for any i ∈ {1, ..., I} the set Ω ∩B(xi, 2r) is the intersection
of Ω with an half-space of the form (58), up to some rotation. We also choose a τ > 0 such that
τ‖v‖L∞(ΩT ) ≤ r.
Since Problem (1) is linear, we can assume that u0 (resp. ub) is supported in Ω ∩ B(xi, r) (resp. in
ΓT ∩ ((0, T )× B(xi, r))). A standard estimate shows that, thanks to the choice of τ , the corresponding
solution is supported in Ω ∩ B(xi, 2r) during the time interval (0, τ). Hence, we can apply the claim
proven in the first step and deduce that the solution is BV during the time interval (0, τ) with the suitable
estimate. Using a partition of unity we can then conclude that, for any data u0 and ub, we have

sup
t∈[0,τ ]

TVΩ(u(t, .)) ≤ C(‖u0‖BV(Ω) + ‖ub‖BV(ΓT )).

Applying the same result on the time interval [τ, 2τ ], since τ only depends on Ω and v we get

sup
t∈[τ,2τ ]

TVΩ(u(t, .)) ≤ C(‖u(τ, .)‖BV(Ω) + ‖ub‖BV(ΓT )),

and combining the two estimates finally gives

sup
t∈[0,2τ ]

TVΩ(u(t, .)) ≤ C2(‖u0‖BV(Ω) + ‖ub‖BV(ΓT )).

By a simple induction, we prove that

sup
t∈[0,T ]

TVΩ(u(t, .)) ≤ CT/τ (‖u0‖BV(Ω) + ‖ub‖BV(ΓT )).

Finally, we known that if u0 and ub are both equal to a given constant then the solution u is itself
constant. Hence, by standard arguments the right-hand side in the last inequality can be replaced by
‖γΓu

0 − ub(0, .)‖L1 + TVΩ(u0) + TVΓT (ub).
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