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Randomized dynamic programming principle and Feynman-Kac

representation for optimal control of McKean-Vlasov dynamics

Erhan BAYRAKTAR∗ Andrea COSSO† Huyên PHAM‡

June 27, 2016

Abstract

We analyze a stochastic optimal control problem, where the state process follows a

McKean-Vlasov dynamics and the diffusion coefficient can be degenerate. We prove that

its value function V admits a nonlinear Feynman-Kac representation in terms of a class of

forward-backward stochastic differential equations, with an autonomous forward process. We

exploit this probabilistic representation to rigorously prove the dynamic programming princi-

ple (DPP) for V . The Feynman-Kac representation we obtain has an important role beyond

its intermediary role in obtaining our main result: in fact it would be useful in developing

probabilistic numerical schemes for V . The DPP is important in obtaining a characterization

of the value function as a solution of a non-linear partial differential equation (the so-called

Hamilton-Jacobi-Belman equation), in this case on the Wasserstein space of measures. We

should note that the usual way of solving these equations is through the Pontryagin maxi-

mum principle, which requires some convexity assumptions. There were attempts in using

the dynamic programming approach before, but these works assumed a priori that the con-

trols were of Markovian feedback type, which helps write the problem only in terms of the

distribution of the state process (and the control problem becomes a deterministic problem).

In this paper, we will consider open-loop controls and derive the dynamic programming

principle in this most general case. In order to obtain the Feynman-Kac representation and

the randomized dynamic programming principle, we implement the so-called randomization

method, which consists in formulating a new McKean-Vlasov control problem, expressed in

weak form taking the supremum over a family of equivalent probability measures. One of

the main results of the paper is the proof that this latter control problem has the same value

function V of the original control problem.
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1 Introduction

In the present paper we study a stochastic optimal control problem of McKean-Vlasov type.

More precisely, let T > 0 be a finite time horizon, (Ω,F ,P) a complete probability space,

B = (Bt)t≥0 a d-dimensional Brownian motion defined on (Ω,F ,P), FB = (FB
t )t≥0 the P-

completion of the filtration generated by B, and G a sub-σ-algebra of F independent of B. Let

also P2(R
n) denote the set of all probability measures on (Rn,B(Rn)) with a finite second-order

moment. We endow P2(R
n) with the 2-Wasserstein metricW2, and assume that G is rich enough

in the sense that P2(R
n) = {Pξ : ξ ∈ L2(Ω,G,P;Rn)}, where Pξ denotes the law of ξ under P.

Then, the controlled state equations are given by

Xt,ξ,α
s = ξ +

∫ s

t
b
(

r,Xt,ξ,α
r ,PXt,ξ,α

r
, αr

)

dr +

∫ s

t
σ
(

r,Xt,ξ,α
r ,PXt,ξ,α

r
, αr

)

dBr, (1.1)

Xt,x,ξ,α
s = x+

∫ s

t
b
(

r,Xt,x,ξ,α
r ,PXt,ξ,α

r
, αr

)

dr +

∫ s

t
σ
(

r,Xt,x,ξ,α
r ,PXt,ξ,α

r
, αr

)

dBr, (1.2)

for all s ∈ [t, T ], where (t, x, ξ) ∈ [0, T ] × Rn × L2(Ω,G,P;Rn), and α is an admissible control

process, namely an FB-progressive process α : Ω × [0, T ] → A, with A Polish space. We denote

by A the set of admissible control processes. On the coefficients b : [0, T ] × Rn × P2(R
n) ×

A → Rn and σ : [0, T ] × Rn × P2(R
n) × A → Rn×d we impose standard Lipschitz and linear

growth conditions, which guarantee existence and uniqueness of a pair (Xt,ξ,α
s ,Xt,x,ξ,α

s )s∈[t,T ] of

continuous (FB
s ∨ G)s-adapted processes solution to equations (1.1)-(1.2). Notice that Xt,x,ξ,α

depends on ξ only through its law π := Pξ. Therefore, we define Xt,x,π,α := Xt,x,ξ,α.

The control problem consists in maximizing over all admissible control processes α ∈ A the

following functional

J(t, x, π, α) = E

[
∫ T

t
f
(

s,Xt,x,π,α
s ,PXt,ξ,α

s
, αs

)

ds+ g
(

Xt,x,π,α
T ,P

X
t,ξ,α
T

)

]

,

for any (t, x, π) ∈ [0, T ] × Rn × P2(R
n), where f : [0, T ] × Rn × P2(R

n)× A → R and g : Rn ×
P2(R

n) → R satisfy suitable continuity and growth conditions, see Assumptions (A1) and

(A2). We define the value function

V (t, x, π) = sup
α∈A

J(t, x, π, α), (1.3)

for all (t, x, π) ∈ [0, T ] × Rn × P2(R
n). We will show in Proposition 2.2 that the mapping V is

the disintegration of the value function

VMKV(t, ξ) = sup
α∈Aξ

E

[
∫ T

t
f
(

s,Xt,ξ,α
s ,Pξ

Xt,ξ,α
s

, αs

)

ds+ g
(

Xt,ξ,α
T ,Pξ

X
t,ξ,α
T

)

]

, (1.4)

for every (t, ξ) ∈ [0, T ] × L2(Ω,G,P;Rn), where Aξ denotes the set of A-valued (FB
s ∨ σ(ξ))-

progressive processes, and P
ξ

Xt,ξ,α
s

denotes the regular conditional distribution of the random

variable Xt,ξ,α
s : Ω → Rn with respect to σ(ξ). That is,

VMKV(t, ξ) =

∫

V (t, x, π)π(dx). (1.5)

Notice that at time t = 0, when ξ = x0 is a constant, then VMKV(0, x0) is the natural formulation

of the McKean-Vlasov control problem as in [13].
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Optimal control of McKean-Vlasov dynamics is a new type of stochastic control problem

related to, but different from, what is well-known as mean field games (MFG), and which has

attracted a surge of interest in the stochastic control community since the lectures by P.L. Lions

at Collège de France, see [22] and [10], and the recent books [6] and [11]. Both of these problems

describe equilibriums states of large population of weakly interacting symmetric players and

we refer to [14] for a discussion pointing out the differences between the two frameworks: In

a nutshell MFGs describe Nash equilibrium in large populations and the optimal control of

McKean-Vlasov dynamics describes the Pareto optimality.

In the literature McKean-Vlasov control problem is tackled by two different approaches: On

the one hand, the stochastic Pontryagin maximum principle allows one to characterize solutions

to the controlled McKean-Vlasov systems in terms of an adjoint backward stochastic differential

equation (BSDE) coupled with a forward SDE: see [1], [8] in which the state dynamics depend

upon moments of the distribution, and [13] for a deep investigation in a more general setting. On

the other hand, the dynamic programming (DP) method (also called Bellman principle), which

is known to be a powerful tool for standard Markovian stochastic control problem and does not

require any convexity assumption usually imposed in Pontryagin principle, was first used in [21]

and [5] for a specific McKean-Vlasov SDE and cost functional, depending only upon statistics

like the mean of the distribution of the state variable. These papers assume a priori that the

state variables marginals at all times have a density. Recently, [23] managed to drop the density

assumption, but still restricted the admissible controls to be of closed-loop (a.k.a. feedback) type,

i.e., deterministic and Lipschitz functions of the current value of the state, which is somewhat

restrictive. This feedback form on the class of controls allows one to reformulate the McKean-

Vlasov control problem (1.4) as a deterministic control problem in an infinite dimensional space

with the marginal distribution as the state variable. In this paper we will consider the most

general case and allow the controls to be open-loop. In this case reformulation mentioned above

is no more possible. We will instead work with a proper disintegration of the value function,

which we described in (1.4). The disintegration formula (1.5) was pointed out heuristically in

[12], see their formulae (40) and (41), but the value function V was not identified. The idea of

formulating the McKean-Vlasov control problem as in (1.3) (rather than as in (1.4)) is inspired

by [9], where the uncontrolled case is addressed. We will then generalize the randomization

approach developed by [19] to the McKean-Vlasov control problem corresponding to V .

The DPP that we will prove is the so-called randomized dynamic programming principle

(see [4]), which is the dynamic programming principle for an intensity control problem for a

Poisson random measure whose marks leave in a subclass of control processes which is dense

with respect to the Krylov metric (see Definition 3.2.3 in [20]). See (3.8) for the definition of the

randomized control problem, Theorem 3.1 for the equivalence to V (in itself is one of the main

technical contributions), and Theorem 5.1, which is our main result, for the statement of the

randomized dynamic programming principle. Although, the approach of replacing the original

control problem with a randomized version is also taken in [4] and [15], our contribution here is

in identifying the correct randomization that corresponds to the McKean-Vlasov problem. The

McKean-Vlasov nature of the control problem makes this task rather difficult and as a result

the marks of the Poisson random measure live in an abstract space of processes. We should

also emphasize that another relevant issue resolved in this paper concerns the flow properties

for the solutions to equations (1.1) and (1.2), see Section 5.1. The importance of the flow
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properties is to prove an identification formula (Lemma 5.3) between V and the solution to the

BSDE, which in turn allows to derive the randomized dynamic programming principle for V .

Let us also note that one could easily derive the standard DPP from the randomized version.

However, there is no advantage in doing it, since the randomized DPP is as powerful as the

standard dynamic programming principle for our purposes. In particular, our aim is to use

the randomized dynamic programming principle to characterize V through a Hamilton-Jacobi-

Bellman on the Wasserstein space P2(R
n), using the recent notion of Lions’ differentiability.

The derivation of such a Hamilton-Jacobi-Bellman equation will be the subject of a companion

paper.

Although it is an intermediary step in deriving the randomized DPP, we see Theorem 4.1 as

the second main result of our paper. Here we derive the nonlinear Feynman-Kac representation

of the value function V in terms of a class of forward-backward stochastic differential equations

with constrained jumps, where the forward process is autonomous. This representation has

been derived in [19] for the case of classical stochastic optimal control problems and here we

are generalizing it to McKean-Vlasov control problems. The importance of this representation,

beyond its intermediary role, is that it would be useful in developing probabilistic numerical

schemes for V (see [18] for the case treated in [19]).

The rest of the paper is organized as follows. Section 2 is devoted to the formulation of the

McKean-Vlasov control problem, and its continuity properties. In Section 3 we introduce the

randomized McKean-Vlasov control problem and we prove the fundamental equivalence result

between V and V R (Theorem 3.1). In Section 4 we prove the nonlinear Feynman-Kac represen-

tation for V in terms of the so-called randomized equation, namely BSDE (4.1). In Section 5

we derive the randomized dynamic programming principle, proving the flow properties (Lemma

5.2) and the identification between V and the solution to the BSDE (Lemma 5.3). Finally, in

the Appendix we prove some convergence results with respect to the 2-Wasserstein metric W2

(Appendix A), we report the proofs of the measurability Lemmata 3.1 and 3.2 (Appendix B), we

state and prove a stability result with respect to the Krylov metric ρ̃ (Appendix C), we consider

an alternative randomization McKean-Vlasov control problem, more similar to the randomized

problems studied in [4, 15, 19] (Appendix D).

2 Formulation of the McKean-Vlasov control problem

2.1 Notations

Consider a complete probability space (Ω,F ,P) and a d-dimensional Brownian motion B =

(Bt)t≥0 defined on it. Let FB = (FB
t )t≥0 denote the P-completion of the filtration generated by

B. Fix a finite time horizon T > 0 and a Polish space A, endowed with a metric ρ. We suppose,

without loss of generality, that ρ < 1 (if this is not the case, we replace ρ with the equivalent

metric ρ/(1 + ρ)). We indicate by B(A) the family of Borel subsets of A.

Let P2(R
n) denote the set of all probability measures on (Rn,B(Rn)) with a finite second-

order moment. We endow P2(R
n) with the 2-Wasserstein metric W2 defined as follows:

W2(π, π
′) = inf

{(
∫

Rn×Rn

|x−x′|2 π(dx, dx′)
)1/2

: π ∈ P2(R
n×Rn) with marginals π and π′

}

,

for all π, π′ ∈ P2(R
n). We recall from Theorem 6.18 in [28] that (P2(R

n),W2) is a complete
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separable metric space. Notice that

W2(Pξ,Pξ′) ≤ (E[|ξ − ξ′|2])1/2, for every pair ξ, ξ′ ∈ L2(Ω,F ,P;Rn), (2.1)

where Pξ denotes the law under P of the random variable ξ : Ω → Rn. We also denote by ‖π‖2

the square root of the second-order moment of π ∈ P2(R
n):

W2(π, δ0) = ‖π‖2 =

(
∫

Rn

|x|2 π(dx)
)

1
2

, for all π ∈ P2(R
n), (2.2)

where δ0 is the Dirac measure on Rn concentrated at the origin. We denote B(P2(R
n)) the

Borel σ-algebra on P2(R
n) induced by the 2-Wasserstein metric W2.

We assume that there exists a sub-σ-algebra G ⊂ F such that B is independent of G and

P2(R
n) = {Pξ : ξ ∈ L2(Ω,G,P;Rn)}.

Finally, we denote C2(R
n) the set of real-valued continuous functions with at most quadratic

growth, and B2(R
n) the set of real-valued Borel measurable functions with at most quadratic

growth.

Remark 2.1 For every ϕ ∈ C2(R
n), let Λϕ : P2(R

n) → R be given by

Λϕ(π) =

∫

Rn

ϕ(x)π(dx), for every π ∈ P2(R
n).

We notice that (as remarked on pages 6-7 in [16]) B(P2(R
n)) coincides with the σ-algebra

generated by the family of maps Λϕ , ϕ ∈ C2(R
n). As a consequence, we observe that, given a

measurable space (E, E) and a map F : E → P2(R
n), then F is measurable if and only if Λϕ ◦F

is measurable, for every ϕ ∈ C2(R
n). Finally, we notice that if ϕ ∈ B2(R

n) then the map Λϕ is

B(P2(R
n))-measurable. This latter property can be proved using a monotone class argument,

noting that Λϕ is B(P2(R
n))-measurable whenever ϕ ∈ C2(R

n). 2

2.2 Optimal control of McKean-Vlasov dynamics

Let A denote the set of admissible control processes, which are FB-progressive processes α : Ω×
[0, T ] → A. Given (t, x, ξ) ∈ [0, T ] × Rn × L2(Ω,G,P;Rn) and α ∈ A, the controlled state

equations are given by:

dXt,ξ,α
s = b

(

s,Xt,ξ,α
s ,PXt,ξ,α

s
, αs

)

ds+ σ
(

s,Xt,ξ,α
s ,PXt,ξ,α

s
, αs

)

dBs, Xt,ξ,α
t = ξ, (2.3)

dXt,x,ξ,α
s = b

(

s,Xt,x,ξ,α
s ,PXt,ξ,α

s
, αs

)

ds+ σ
(

s,Xt,x,ξ,α
s ,PXt,ξ,α

s
, αs

)

dBs, Xt,x,ξ,α
t = x, (2.4)

for all s ∈ [t, T ]. The coefficients b : [0, T ]×Rn×P2(R
n)×A→ Rn and σ : [0, T ]×Rn×P2(R

n)×
A → Rn×d are assumed to be Borel measurable. Recall that PXt,ξ,α

s
denotes the law under P

of the random variable Xt,ξ,α
s : Ω → Rn. Notice that (PXt,ξ,α

s
)s∈[t,T ] depends on ξ only through

its law π = Pξ, and π is an element of P2(R
n). As a consequence, Xt,x,ξ,α = (Xt,x,ξ,α

s )s∈[t,T ]

depends on ξ only through π. Therefore, we denote Xt,x,ξ,α simply by Xt,x,π,α, whenever π = Pξ.

Our aim is to maximize, over all α ∈ A, the following functional

J(t, x, π, α) = E

[
∫ T

t
f
(

s,Xt,x,π,α
s ,PXt,ξ,α

s
, αs

)

ds+ g
(

Xt,x,π,α
T ,P

X
t,ξ,α
T

)

]

, (2.5)
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where f : [0, T ] × Rn × P2(R
n) × A → R and g : Rn × P2(R

n) → R are Borel measurable. We

impose the following assumptions.

(A1)

(i) For every t ∈ [0, T ], b(t, ·), σ(t, ·) and f(t, ·) are continuous on Rn ×P2(R
n)×A, and g is

continuous on Rn × P2(R
n).

(ii) For every (t, x, x′, π, π′, a) ∈ [0, T ] ×Rn × Rn × P2(R
n)× P2(R

n)×A,

|b(t, x, π, a) − b(t, x′, π′, a)|+ |σ(t, x, π, a) − σ(t, x′, π′, a)| ≤ L
(

|x− x′|+W2(π, π
′)
)

,

|b(t, 0, δ0, a)|+ |σ(t, 0, δ0, a)| ≤ L,

|f(t, x, π, a)| + |g(x, π)| ≤ h(‖π‖2)
(

1 + |x|p
)

,

for some positive constants L and p, and some continuous function h : R+ → R+.

Under Assumption (A1), and recalling property (2.1), it can be proved by standard ar-

guments that there exists a unique (up to indistinguishability) pair (Xt,ξ,α
s ,Xt,x,π,α

s )s∈[t,T ] of

continuous (FB
s ∨ G)s-adapted processes solution to equations (2.3)-(2.4), satisfying

sup
α∈A

E

[

sup
s∈[t,T ]

(∣

∣Xt,ξ,α
s

∣

∣

2
+

∣

∣Xt,x,π,α
s

∣

∣

q)
]

< ∞, (2.6)

for all q ≥ 1. The estimate supα∈A E[sups∈[t,T ] |Xt,ξ,α
s |q] < ∞ holds whenever |ξ|q is integrable.

Notice that (Xt,x,π,α
s )s∈[t,T ] is F

B-adapted.

Recalling P2(R
n) = {Pξ : ξ ∈ L2(Ω,G,P;Rn)}, we see that J(t, x, π, α) is defined for every

quadruple (t, x, π, α) ∈ [0, T ] × Rn × P2(R
n)×A. The value function of our stochastic control

problem is the function V on [0, T ]× Rn × P2(R
n) defined as

V (t, x, π) = sup
α∈A

J(t, x, π, α), (2.7)

for all (t, x, π) ∈ [0, T ] ×Rn × P2(R
n).

From estimate (2.6), we see that ‖P
Xt,ξ,α

s
‖2 ≤M , for some positive constant M independent

of α ∈ A and s ∈ [t, T ]. It follows from the continuity of h that the quantity h(‖P
Xt,ξ,α

s
‖2) is

bounded uniformly with respect to α and s. Therefore, by the polynomial growth condition

on f and g in Assumption (A1)(ii), we deduce that the value function V in (2.7) is always a

finite real number on its domain [0, T ] × Rn × P2(R
n), namely V : [0, T ] × Rn × P2(R

n) → R.

In particular, it is easy to see that, under Assumption (A1), V satisfies the following growth

condition:

|V (t, x, π)| ≤ ψ(‖π‖2)
(

1 + |x|p
)

, (2.8)

for some continuous function ψ : R+ → R+.

We now study the continuity of V . Firstly, we impose the following additional assumption.

(A2) For every t ∈ [0, T ] andR > 0, the map (x, π) 7→ f(t, ·, ·, a) is uniformly continuous and

bounded on {(x, π) ∈ Rn ×P2(R
n) : |x|, ‖π‖2 ≤ R}, uniformly with respect to a ∈ A. For every

R > 0, the map g is uniformly continuous and bounded on {(x, π) ∈ Rn × P2(R
n) : |x|, ‖π‖2 ≤

R}.
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Proposition 2.1 Under Assumptions (A1) and (A2), for every t ∈ [0, T ] the map (x, π) 7→
V (t, x, π) is continuous on Rn × P2(R

n).

Proof. We begin noting that, as a consequence of Assumption (A2), for every t ∈ [0, T ] and

R > 0, there exists a modulus of continuity δRt : [0,∞) → [0,∞) such that, for t ∈ [0, T ),

∣

∣f(t, x, π, a)− f(t, x′, π′, a)
∣

∣ ≤ δRt
(

|x− x′|+W2(π, π
′)
)

,

and, for t = T ,

∣

∣f(T, x, π, a)− f(T, x′, π′, a)
∣

∣+
∣

∣g(x, π) − g(x′, π)
∣

∣ ≤ δRT
(

|x− x′|+W2(π, π
′)
)

,

for all (x, π), (x′, π′) ∈ Rn × P2(R
n), a ∈ A, with |x|, |x′|, ‖π‖2, ‖π′‖2 ≤ R. Recall that, by

definition (see for instance [2], page 406), the modulus of continuity δRs is nondecreasing and

limε→0+ δ
R
s (ε) = 0. Moreover, by Assumption (A2), we see that δRs can be taken bounded. In

particular, lim supε→+∞ δRs (ε)/ε = 0. Therefore, without loss of generality, we can suppose that

δRs is concave (see for instance Theorem 1, page 406, in [2]; we refer, in particular, to the concave

modulus of continuity constructed in the proof of Theorem 1 and given by formula (1.6) at page

407). Then, we notice that δRs is also subadditive.

Now, fix t ∈ [0, T ] and (x, π), (xm, πm) ∈ Rn×P2(R
n), with |xm−x| → 0 andW2(πm, π) → 0

as m goes to infinity. Our aim is to prove that

V (t, xm, πm)
m→∞−→ V (t, x, π). (2.9)

By Lemma A.1 we know that there exist random variables ξ, ξm ∈ L2(Ω,G,P;Rn) such that π =

Pξ and πm = Pξm under P, moreover ξm converges to ξ pointwise P-a.s. and in L2(Ω,G,P;Rn).

In particular, supm E[|ξm|2] <∞. Then, by standard arguments, we have

max

{

sup
s∈[t,T ], α∈A

∥

∥P
Xt,ξ,α

s

∥

∥

2
, sup

m
sup

s∈[t,T ], α∈A

∥

∥P
Xt,ξm,α

s

∥

∥

2

}

=: R̄,

for some constant R̄ ≥ 0. For every R > R̄ and α ∈ A, define the set Eα ∈ F as

Eα :=
{

ω ∈ Ω: sup
s∈[t,T ]

|Xt,x,π,α
s (ω)|, sup

m
sup

s∈[t,T ]
|Xt,xm,πm,α

s (ω)| ≤ R
}

.

Then, we have

|V (t, x, π) − V (t, xm, πm)|

≤ sup
α∈A

E

[

1Eα

∫ T

t
δRs

(
∣

∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣

∣

)

ds+ 1Eα δ
R
T

(
∣

∣Xt,x,π,α
T −Xt,xm,πm,α

T

∣

∣

)

]

+ sup
α∈A

E

[

1Eα

∫ T

t
δRs

(

W2

(

P
Xt,ξ,α

s
,P

Xt,ξm,α
s

))

ds+ 1Eα δ
R
T

(

W2

(

P
Xt,ξ,α

T

,P
Xt,ξm,α

T

))

]

+ sup
α∈A

E

[

1Ec
α

∣

∣g
(

Xt,x,π,α
T ,P

Xt,ξ,α
T

)

− g
(

Xt,xm,πm,α
T ,P

Xt,ξm,α
T

)
∣

∣

+ 1Ec
α

∫ T

t

∣

∣f
(

s,Xt,x,π,α
s ,P

Xt,ξ,α
s

, αs

)

− f
(

s,Xt,xm,πm,α
s ,P

Xt,ξm,α
s

, αs

)
∣

∣ ds

]

≤ sup
α∈A

E

[
∫ T

t
δRs

(
∣

∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣

∣

)

ds + δRT
(
∣

∣Xt,x,π,α
T −Xt,xm,πm,α

T

∣

∣

)

]
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+ sup
α∈A

(
∫ T

t
δRs

(

W2

(

P
Xt,ξ,α

s
,P

Xt,ξm,α
s

))

ds+ δRT
(

W2

(

P
Xt,ξ,α

T

,P
Xt,ξm,α

T

))

)

+ C(1 + |x|p + |xm|p) sup
α∈A

P(Ec
α), (2.10)

for some positive constant C, depending only on R̄, T , the constants L, p in Assumption (A1)(ii),

and the maximum max0≤r≤R̄ h(r), where the function h was introduced in Assumption (A1)(ii).

Recalling that W2(PXt,ξ,α
s

,P
Xt,ξm,α

s
) ≤ E[|Xt,ξ,α

s −Xt,ξm,α
s |2] and δRs is nondecreasing, we find

δRs
(

W2

(

P
Xt,ξ,α

s
,P

Xt,ξm,α
s

))

≤ δRs

(

E
[∣

∣Xt,ξ,α
s −Xt,ξm,α

s

∣

∣

2]1/2
)

. (2.11)

Now, recall the standard estimate

sup
α∈A

E
[
∣

∣Xt,ξ,α
s −Xt,ξm,α

s

∣

∣

2]1/2 ≤ ĉE
[

|ξ − ξm|2
]1/2

, (2.12)

for some positive constant ĉ, depending only on T and L. Therefore, from (2.11) we obtain

δRs
(

W2

(

P
Xt,ξ,α

s
,P

Xt,ξm,α
s

))

≤ δRs

(

ĉE
[

|ξ − ξm|2
]1/2

)

. (2.13)

On the other hand, from the concavity of δRs , we get

E
[

δRs
(∣

∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣

∣

)]

≤ δRs
(

E
[∣

∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣

∣

])

. (2.14)

By standard arguments, we have

sup
α∈A

E

[

sup
s∈[t,T ]

∣

∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣

∣

]

≤ c
(

|x− xm|+ sup
α∈A

sup
s∈[t,T ]

W2

(

P
Xt,ξ,α

s
,P

Xt,ξm,α
s

)

)

,

where c is a positive constant, depending only on T and L. Therefore, by (2.12), we obtain

sup
α∈A

E

[

sup
s∈[t,T ]

∣

∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣

∣

]

≤ c
(

|x− xm|+ ĉE
[

|ξ − ξm|2
]1/2

)

. (2.15)

Since δRs is nondecreasing, from (2.14) and (2.15), we find

sup
α∈A

E
[

δRs
(
∣

∣Xt,x,π,α
s −Xt,xm,πm,α

s

∣

∣

)]

≤ δRs

(

c |x− xm|+ c ĉE
[

|ξ − ξm|2
]1/2

)

. (2.16)

Concerning P(Ec
α), we have

P(Ec
α) ≤ P

(

sup
s∈[t,T ]

|Xt,x,π,α
s | > R

)

+ P

(

sup
s∈[t,T ]

|Xt,xm,πm,α
s | > R

)

(2.17)

≤ 1

R2
E

[

sup
s∈[t,T ]

|Xt,x,π,α
s |2

]

+
1

R2
E

[

sup
s∈[t,T ]

|Xt,xm,πm,α
s |2

]

≤ c0
R2

(

1 + |x|2 + |xm|2
)

,

for some positive constant c0, depending only on T , L, R̄. In conclusion, plugging (2.13)-(2.16)-

(2.17) into (2.10), we get

|V (t, x, π)− V (t, xm, πm)|

≤
∫ T

t
δRs

(

c |x− xm|+ c ĉE
[

|ξ − ξm|2
]1/2

)

ds+ δRT

(

c |x− xm|+ c ĉE
[

|ξ − ξm|2
]1/2

)
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+

∫ T

t
δRs

(

ĉE
[

|ξ − ξm|2
]1/2

)

ds+ δRT

(

ĉE
[

|ξ − ξm|2
]1/2

)

+
c0C

R2

(

1 + |x|2 + |xm|2
)(

1 + |x|p + |xm|p
)

. (2.18)

Taking the lim supm→∞ in the above inequality, we find

lim sup
m→∞

|V (t, x, π) − V (t, xm, πm)| ≤ c0C

R2

(

1 + 2|x|2
)(

1 + 2|x|p
)

.

Letting R→ ∞, we deduce that lim supn→∞ |V (t, x, π)−V (t, xm, πm)| = 0, therefore (2.9) holds.

2

We end this section showing that the value function V : [0, T ]×Rn ×P2(R
n) → R given by

(2.7) is the disintegration of the value function VMKV : [0, T ]× L2(Ω,G,P;Rn) → R given by:

VMKV(t, ξ) = sup
α∈Aξ

E

[
∫ T

t
f
(

s,Xt,ξ,α
s ,Pξ

Xt,ξ,α
s

, αs

)

ds+ g
(

Xt,ξ,α
T ,Pξ

X
t,ξ,α
T

)

]

, (2.19)

for every (t, ξ) ∈ [0, T ] × L2(Ω,G,P;Rn), where Aξ denotes the set of A-valued (FB
s ∨ σ(ξ))-

progressive processes, (Xt,ξ,α
s )s∈[t,T ] is the solution to the following equation:

dXt,ξ,α
s = b

(

s,Xt,ξ,α
s ,Pξ

Xt,ξ,α
s

, αs

)

ds+ σ
(

s,Xt,ξ,α
s ,Pξ

Xt,ξ,α
s

, αs

)

dBs, Xt,ξ,α
t = ξ,

for all s ∈ [t, T ], with α ∈ Aξ, and P
ξ

Xt,ξ,α
s

denotes the regular conditional distribution of the

random variable Xt,ξ,α
s : Ω → Rn with respect to σ(ξ), whose existence is guaranteed for instance

by Theorem 6.3 in [17].

Proposition 2.2 Under Assumptions (A1) and (A2), for every (t, ξ) ∈ [0, T ]×L2(Ω,G,P;Rn),

with π = Pξ under P, we have

VMKV(t, ξ) = E
[

V (t, ξ, π)
]

,

or, equivalently,

VMKV(t, ξ) =

∫

Rn

V (t, x, π)π(dx).

Proof. Fix t ∈ [0, T ]. Recall from Proposition 2.1 that the map (x, π) 7→ V (t, x, π) is continuous

on Rn×P2(R
n). Proceeding as in the proof of Proposition 2.1, we can also prove that the map

ξ 7→ VMKV(t, ξ) is continuous on L2(Ω,G,P;Rn). As a consequence, it is enough to prove the

Proposition for ξ ∈ L2(Ω,G,P;Rn) taking only a finite number of values, the general result being

proved by approximation. In other words, we suppose that

ξ =

K
∑

k=0

xk 1Ek
,

for some K ∈ N, xk ∈ Rn, Ek ∈ σ(ξ), with (Ek)k=1,...,K being a partition of Ω. Notice that

α ∈ Aξ if and only if

α =

K
∑

k=0

αk 1Ek
, (2.20)

9



for some αk ∈ A. We also observe that

Xt,ξ,α
s =

K
∑

k=0

Xt,xk,αk
s 1Ek

, P
ξ

Xt,ξ,α
s

=
K
∑

k=0

P
X

t,xk,αk
s

1Ek
.

Then, the stochastic processes (Xt,ξ,α
s )s∈[t,T ] and (X

t,x1,δx1 ,α1
s 1E1 + · · ·+Xt,xK ,δxK ,αK

s 1EK
)s∈[t,T ]

are indistinguishable, since they solve the same equation. Therefore

VMKV(t, ξ) = sup
α∈Aξ

E

[
∫ T

t
f
(

s,Xt,ξ,α
s ,Pξ

Xt,ξ,α
s

, αs

)

ds+ g
(

Xt,ξ,α
T ,Pξ

X
t,ξ,α
T

)

]

(2.21)

= sup
α∈Aξ

E

[ K
∑

k=0

(
∫ T

t
f
(

s,X
t,xk ,δxk ,αk
s ,P

X
t,xk,αk
s

, (αk)s
)

ds+ g
(

X
t,xk ,δxk ,αk

T ,P
X

t,xk,αk
T

)

)

1Ek

]

.

Since ξ is independent of Xt,xk,δxK ,αk and of αk, we can write the last quantity in (2.21) as

VMKV(t, ξ) = sup
α∈Aξ

E

[ K
∑

k=0

E

[
∫ T

t
f
(

s,X
t,xk,δxk ,αk
s ,P

X
t,xk,αk
s

, (αk)s
)

ds+g
(

X
t,xk ,δxk ,αk

T ,P
X

t,xk,αk
T

)

]

1Ek

]

.

From (2.20), we conclude that

VMKV(t, ξ) = E

[ K
∑

k=0

sup
αk∈A

E

[
∫ T

t
f
(

s,X
t,xk,δxk ,αk
s ,P

X
t,xk,αk
s

, (αk)s
)

ds+ g
(

X
t,xk,δxk ,αk

T ,P
X

t,xk,αk
T

)

]

1Ek

]

= E

[ K
∑

k=0

V (t, xk, δxk
) 1Ek

]

= E
[

V (t, ξ, π)
]

.

2

3 The randomized McKean-Vlasov control problem

Following Definition 3.2.3 in [20], we define on A the metric ρ̃ given by:

ρ̃(α, β) := E

[
∫ T

0
ρ(αt, βt) dt

]

, (3.1)

where we recall that ρ is a metric on A satisfying ρ < 1. Notice that convergence with respect

to ρ̃ is equivalent to convergence in dP dt-measure. We also observe that (A, ρ̃) is a metric space

(identifying processes α and β which are equal dP dt-a.e. on Ω × [0, T ]). Moreover, since A is

a Polish space, it turns out that (A, ρ̃) is also a Polish space (separability follows from Lemma

3.2.6 in [20], completeness follows from the completeness of A and the fact that a ρ̃-limit of

FB-progressive processes is still FB-progressive). We denote by B(A) the family of Borel subsets

of A.

Following [20], we introduce the following subset of admissible control processes.

Definition 3.1 For every t ∈ [0, T ], let (Et
ℓ)ℓ≥1 ∈ F be a countable class of subsets of Ω which

generates σ(Bs, s ∈ [0, t]). Fix a countable dense subset (am)m≥1 of A. Fix also, for every
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integer k ≥ 1, a subdivision Ik := {0 =: t0 < t1 < . . . < tk := T} of the interval [0, T ], with the

diameter maxi=1,...,k(ti − ti−1) of the subdivision Ik going to zero as k → ∞. Then, we denote

Astep :=
{

α ∈ A : there exist k ≥ 1, M ≥ 1, L ≥ 1, such that, for every i = 0, . . . , k − 1,

αti : Ω → (am)m=1,...,M , with αti constant on the sets of the partition

generated by Eti
1 , . . . , E

ti
L , and, for every t ∈ [0, T ],

αt = αt0 1[t0,t1)(t) + · · ·+ αtk−1
1[tk−1,tk)(t) + αtk 1{tk}(t)

}

.

Remark 3.1 Notice that Astep depends (even if we omit to write explicitly this dependence) on

the two sequences (am)m≥1 and (Ik)k≥1, which are supposed to be fixed throughout the paper.

The set Astep, with αti being σ(Bs, s ∈ [0, ti])-measurable, is introduced in the proof of Lemma

3.2.6 in [20], where it is proved that it is dense in A with respect to the metric ρ̃ defined in (3.1).

It can be shown (proceeding as in the proof of Lemma C.1) that the map α 7→ J(t, x, π, α) is

continuous with respect to ρ̃, so that we could define V (t, x, π) in the following equivalent way:

V (t, x, π) = sup
α∈Astep

J(t, x, π, α). (3.2)

Finally, we observe that Astep is a countable set, so that it is a Borel subset of A, namely

Astep ∈ B(A). 2

Now, in order to implement the randomization method, it is better to reformulate the original

McKean-Vlasov control problem as follows. Let Astep be the following set:

Astep :=
{

α : [0, T ] → Astep : α is Borel-measurable, càdlàg, and piecewise constant
}

.

It is easy to see that, for every α ∈ Astep, the stochastic process ((αs)s)s∈[0,T ] is an element

of A. Vice versa, for every element α̂ ∈ Astep, there exists α̂ ∈ Astep such that ((α̂s)s)s∈[0,T ]

coincides with α̂ (take α̂s = α̂, for every s ∈ [0, T ]). Hence, by (3.2),

V (t, x, π) = sup
α∈Astep

J
(

t, x, π, ((αs)s)s∈[0,T ]

)

.

The optimization problem on the right-hand side of the above identity can be seen as a determin-

istic control problem, where the class of admissible control processes is given by {((αs)s)s∈[0,T ] : α

∈ Astep}. We now randomize this latter control problem.

Consider another complete probability space (Ω1,F1,P1). We denote by E1 the P1-expected

value. We suppose that a Poisson random measure µ on R+×A is defined on (Ω1,F1,P1). The

random measure µ has compensator λ(dα) dt, for some finite positive measure λ on A, with full

topological support given by Astep. We denote µ̃(dt dα) := µ(dt dα)− λ(dα) dt the compensated

martingale measure associated to µ. We introduce Fµ = (Fµ
t )t≥0, which is the P1-completion of

the filtration generated by µ, given by:

Fµ
t = σ

(

µ((0, s] ×A′) : s ∈ [0, t], A′ ⊂ Astep

)

∨N 1,

for all t ≥ 0, where N 1 is the class of P1-null sets of F1. We also denote P(Fµ) the predictable

σ-algebra on Ω1 × R+ corresponding to Fµ.
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We recall that µ is associated to a marked point process (Tn,An)n≥1 on R+ × A by the

formula µ =
∑

n≥1 δ(Tn,An), where δ(Tn,An) is the Dirac measure concentrated at the random

point (Tn,An). We recall that every Tn is an Fµ-stopping time and every An is Fµ
Tn
-measurable.

Let Ω̄ = Ω × Ω1, and let F̄ be the P ⊗ P1-completion of F ⊗ F1, and P̄ the extension of

P ⊗ P1 to F̄ . We denote by Ḡ, B̄, µ̄ the canonical extensions of G, B, µ, to Ω̄, given by:

Ḡ := {G × Ω1 : G ∈ G}, B̄(ω, ω1) := B(ω), µ̄(ω, ω1; dt dα) := µ(ω1; dt dα). Let F̄B = (F̄B
t )t≥0

(resp. F̄µ = (F̄µ
t )t≥0) denote the P̄-completion of the filtration generated by B̄ (resp. µ̄). Notice

that F̄B
∞ and F̄µ

∞ are independent.

Let F̄B,µ = (F̄B,µ
t )t≥0 denote the P̄-completion of the filtration generated by B̄ and µ̄. Notice

that B̄ is a Brownian motion with respect to F̄B,µ and the F̄B,µ-compensator of µ̄ is given by

λ(dα) dt. We define the A-valued piecewise constant process Ī = (Īt)t≥0 on (Ω̄, F̄ , P̄) as follows:

Īt(ω, ω
1) =

∑

n≥0

(An(ω
1))t∧T (ω) 1[Tn(ω1),Tn+1(ω1))(t), for all t ≥ 0, (3.3)

where T0 := 0 and A0 := ᾱ, for some deterministic and arbitrary control process ᾱ ∈ Astep,

which will remain fixed throughout the paper. Notice that Ī is F̄B,µ-adapted.

Randomizing the control in (2.3)-(2.4), we are led to consider the following equations on

(Ω̄, F̄ , P̄), for every (t, x, ξ̄) ∈ [0, T ]× Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ̄ under P̄:

dX̄t,ξ̄
s = b

(

s, X̄t,ξ̄
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ σ
(

s, X̄t,ξ̄
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

dB̄s, X̄t,ξ̄
t = ξ̄, (3.4)

dX̄t,x,π
s = b

(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ σ
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

dB̄s, X̄t,x,π
t = x, (3.5)

for all s ∈ [t, T ], where P
F̄µ

s

X̄t,ξ̄
s

denotes the regular conditional distribution of the random variable

X̄t,ξ̄
s : Ω̄ → Rn with respect to F̄µ

s , whose existence is guaranteed for instance by Theorem 6.3

in [17]. Notice that P
F̄µ

s

X̄t,ξ̄
s

depends on ξ only through its law π, so that equation (3.5) depends

only on π. Under Assumption (A1), it follows by standard arguments that there exists a unique

(up to indistinguishability) pair (X̄t,ξ
s , X̄t,x,π

s )s∈[t,T ] of continuous (F̄B,µ
s ∨ Ḡ)s-adapted processes

solution to equations (3.4)-(3.5), satisfying

Ē

[

sup
s∈[t,T ]

(
∣

∣X̄t,ξ̄
s

∣

∣

2
+

∣

∣X̄t,x,π
s

∣

∣

q)
]

< ∞, (3.6)

for all q ≥ 1, where Ē denotes the P̄-expected value. Moreover, (X̄t,x,π
s )s∈[t,T ] is F̄

B,µ-adapted.

We now prove two technical results concerning the process (P
F̄µ

s

X̄t,ξ̄
s

)s∈[t,T ]. In particular, the

first result (Lemma 3.1) concerns a particular version of (P
F̄µ

s

X̄t,ξ̄
s

)s∈[t,T ], which will be used in the

proof of Lemma 3.2. This latter proves the existence of another version of (P
F̄µ

s

X̄t,ξ̄
s

)s∈[t,T ], which

will be used throughout the paper.

Lemma 3.1 Under Assumption (A1), for every (t, π) ∈ [0, T ]×P2(R
n), there exists a P2(R

n)-

valued Fµ-predictable stochastic process (P̂t,π
s )s∈[t,T ] which is a version of (P

F̄µ
s

X̄t,ξ̄
s

)s∈[t,T ], with ξ̄ ∈
L2(Ω̄, Ḡ, P̄;Rn) such that π = Pξ̄ under P̄. For all s ∈ [t, T ], P̂t,π

s is given by

P̂t,π
s (ω1)[ϕ] = E

[

ϕ
(

X̄t,ξ̄
s (·, ω1)

)]

, (3.7)

for every ω1 ∈ Ω1 and ϕ ∈ B2(R
n).
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Proof. See Appendix B. 2

Lemma 3.2 Under Assumption (A1), for every t ∈ [0, T ], there exists a measurable map

P
t,·
· : (Ω1 × [t, T ]× P2(R

n), F1 ⊗ B([t, T ])⊗ B(P2(R
n))) → (P2(R

n),B(P2(R
n))) such that

Pt,π
s = P

F̄µ
s

X̄t,ξ̄
s

,

P1-a.s., for every s ∈ [t, T ], π ∈ P2(R
n), where ξ̄ ∈ L2(Ω̄, Ḡ, P̄;Rn) has law π under P̄. In other

words, for every s ∈ [t, T ] and π ∈ P2(R
n), (Pt,π

s )s∈[t,T ] is a version of (P
F̄µ

s

X̄t,ξ̄
s

)s∈[t,T ].

Proof. See Appendix B. 2

From now on, we will always suppose that (P
F̄µ

s

X̄t,ξ̄
s

)s∈[t,T ] stands for the stochastic process

(Pt,π
s )s∈[t,T ] introduced in Lemma 3.2.

Let us now formulate the randomized McKean-Vlasov control problem. An admissible control

is a P(Fµ) ⊗ B(A)-measurable map ν : Ω1 × R+ × A → (0,∞), which is both bounded away

from zero and bounded from above: 0 < infΩ1×R+×A ν ≤ supΩ1×R+×A ν < ∞. We denote by V
the set of admissible controls. Given ν ∈ V, we define Pν on (Ω1,F1) as dPν = κνT dP

1, where

κν = (κνt )t∈[0,T ] is the Doléans exponential process on (Ω1,F1,P1) defined as

κνt = Et
(
∫ ·

0

∫

A
(νs(α) − 1) µ̃(ds dα)

)

= exp

(
∫ t

0

∫

A
ln νs(α)µ(ds dα) −

∫ t

0

∫

A
(νs(α)− 1)λ(dα) ds

)

, for all t ∈ [0, T ].

Notice that κν is an Fµ-martingale under P1, so that Pν is a probability measure on (Ω1,F1).

We denote by Eν the Pν-expected value. Observe that, by the Girsanov theorem, the Fµ-

compensator of µ under Pν is given by νt(α)λ(dα) dt. Let P̄ν denote the extension of P ⊗ Pν

to (Ω̄, F̄). Then dP̄ν = κ̄νTdP̄, where κ̄
ν
t (ω, ω

1) := κνt (ω
1), for all t ∈ [0, T ]. Using again the

Girsanov theorem, we see that the F̄B,µ-compensator of µ̄ under P̄ν is ν̄t(α)λ(dα) dt, where

ν̄t(ω, ω
1, α) := νt(ω

1, α) is the canonical extension of ν to Ω̄× R+ ×A.

Notice that a Ḡ-measurable ξ̄ : Ω̄ → Rn has law π under P̄ if and only if it has the same law

under P̄ν . In particular, ξ̄ ∈ L2(Ω̄, Ḡ, P̄;Rn) if and only if ξ̄ ∈ L2(Ω̄, Ḡ, P̄ν ;Rn). As a consequence,

the following generalization of estimate (3.6) holds (Ēν denotes the P̄ν-expected value):

sup
ν∈V

Ēν
[

sup
s∈[t,T ]

(∣

∣X̄t,ξ̄
s

∣

∣

2
+

∣

∣X̄t,x,π
s

∣

∣

q)
]

< ∞,

for all q ≥ 1, for every (t, x, ξ̄) ∈ [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ̄ under P̄ (or,

equivalently, under P̄ν).

Let (t, x, ξ̄) ∈ [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄, and ν ∈ V, then the gain

functional for the randomized McKean-Vlasov control problem is given by:

JR(t, x, π, ν) = Ēν

[
∫ T

t
f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)

]

.

As for the functional (2.5), the quantity JR(t, x, π, ν) is defined for every (t, x, π, ν) ∈ [0, T ] ×
Rn × P2(R

n) × V, since by assumption P2(R
n) = {Pξ : ξ ∈ L2(Ω̄, Ḡ, P̄;Rn)}. Then, we can

define the value function of the randomized McKean-Vlasov control problem as

V R(t, x, π) = sup
ν∈V

JR(t, x, π, ν), (3.8)
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for all (t, x, π) ∈ [0, T ] ×Rn × P2(R
n).

Remark 3.2 Let V̂ be the set of P(Fµ) ⊗ B(A)-measurable maps ν̂ : Ω1 × R+ × A → (0,∞),

which are bounded from above supΩ1×R+×A ν̂ < ∞, but not necessarily bounded away from

zero. For every (t, x, π) ∈ [0, T ]× Rn × P2(R
n), we define

V̂ R(t, x, π) = sup
ν̂∈V̂

JR(t, x, π, ν̂)

In [4] the randomized control problem is formulated over V̂. Here we considered V because this

set is more convenient for the proof of Theorem 3.1. However, notice that

V R(t, x, π) = V̂ R(t, x, π). (3.9)

Indeed, clearly we have V ⊂ V̂, so that V R(t, x, π) ≤ V̂ R(t, x, π). On the other hand, let ν̂ ∈ V̂
and define νε = ν̂ ∨ ε, for every ε ∈ (0, 1). Observe that νε ∈ V and κ̄ν

ε

T converges pointwise

P̄-a.s. to κ̄ν̂T . Then, it is easy to see that

JR(t, x, π, νε) = Ē

[

κ̄ν
ε

T

(
∫ T

t
f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)

)]

ε→0+−→ JR(t, x, π, ν̂).

This implies that JR(t, x, π, ν̂) ≤ supν∈V J
R(t, x, π, ν), from which we get the other inequality

V̂ R(t, x, π) ≤ V R(t, x, π), and identity (3.9) follows. 2

We can now prove one of the main results of the paper, namely the equivalence of the two

value functions V and V R.

Theorem 3.1 Under Assumption (A1), the value function V in (2.7) of the McKean-Vlasov

control problem coincides with the value function V R in (3.8) of the randomized problem:

V (t, x, π) = V R(t, x, π),

for all (t, x, π) ∈ [0, T ]× Rn × P2(R
n).

Remark 3.3 As an immediate consequence of Theorem 3.1, we see that V R does not depend

on a0 and λ, since V does not depend on them. 2

Proof (of Theorem 3.1). Fix (t, x, ξ) ∈ [0, T ] × Rn × L2(Ω,G,P;Rn), with π = Pξ under P.

Set ξ̄(ω, ω1) := ξ(ω), then ξ̄ ∈ L2(Ω̄, Ḡ, P̄;Rn) and π = Pξ̄ under P̄. We split the proof of the

equality V (t, x, π) = V R(t, x, π) into three steps, that we now summarize:

I) In step I we prove that the value of the randomized problem does not change if we formulate

the randomized McKean-Vlasov control problem on a new probability space.

II) Step II is devoted to the proof of the first inequality V (t, x, π) ≥ V R(t, x, π).

1) In order to prove it, we construct in substep 1 a new probability space (Ω̌, F̌ , P̌) for
the randomized problem, which is a product space of (Ω,F ,P) and a canonical space

supporting the Poisson random measure. Step I guarantees that the value of the new

randomized problem is still given by V R(t, x, π).

14



2) In substep 2 we prove that the value of the original McKean-Vlasov control problem

is still equal to V (t, x, π) if we enlarge the class of admissible controls, taking all

α̌ : Ω̌ × [0, T ] → A which are progressive with respect to the filtration F̌B,µ∞ . The

new class of admissible controls is denoted ǍB,µ∞ .

3) In substep 3 we conclude the proof of the inequality V (t, x, π) ≥ V R(t, x, π), proving
that for every ν̌ ∈ V̌ there exists α̌ν̌ ∈ ǍB,µ∞ such that J̌R(t, x, π, ν̌) = J̌(t, x, π, α̌ν̌).

From substep 2, we immediately deduce that V (t, x, π) ≥ V R(t, x, π).

III) Step III is devoted to the proof of the other inequality V (t, x, π) ≤ V R(t, x, π). In few

words, we prove that the set {α̌ν̌ : ν̌ ∈ V̌} is dense in ǍB,µ∞ with respect to the distance

ρ̃ in (3.1). Then, the claim follows from the stability Lemma C.1.

Step I. Value of the randomized McKean-Vlasov control problem. Consider another probabilistic

setting for the randomized problem, defined starting from (Ω,F ,P), along the same lines as

in Section 3, where the objects (Ω1,F1,P1), (Ω̄, F̄ , P̄), Ḡ, B̄, µ̄, Tn, An, Ī, X̄
t,ξ̄, X̄t,x,π, V,

JR(t, x, π, ν), V R(t, x, π) are replaced respectively by (Ω̌1, F̌1, P̌1), (Ω̌, F̌ , P̌), Ǧ, B̌, µ̌, Ťn, Ǎn,

Ǐ, X̌t,ξ̌, X̌t,x,π, V̌ , J̌R(t, x, π, ν̌), V̌ R(t, x, π), with ξ̌(ω, ω̌1) := ξ(ω), so that ξ̌ ∈ L2(Ω̌, Ǧ, P̌;Rn)

and π = Pξ̌ under P̌.

We claim that V R(t, x, π) = V̌ R(t, x, π). Let us prove V R(t, x, π) ≤ V̌ R(t, x, π), the other

inequality can be proved in a similar way. We begin noting that V R(t, x, π) ≤ V̌ R(t, x, π) follows
if we prove that for every ν ∈ V there exists ν̌ ∈ V̌ such that JR(t, x, π, ν) = J̌R(t, x, π, ν̌).
Observe that

JR(t, x, π, ν) = Ē

[

κ̄νT

(
∫ T

t
f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)

)]

.

The quantity JR(t, x, π, ν) depends only on the joint law of κ̄νT , X̄
t,x,π
· , PF̄

µ
·

X̄
t,ξ̄
·

, Ī· under P̄, which

in turn depends on the joint law of B̄, µ̄, ν̄ under P̄.

Recall that ν̄t(ω, ω
1, α) := νt(ω

1, α) and ν is P(Fµ) ⊗ B(A)-measurable. Then, we can

suppose, using a monotone class argument, that ν is given by

νs(α) = k(α)1(Tn ,Tn+1](s)Ψ(s, T1, . . . , Tn,A1, . . . ,An),

for some bounded and positive Borel-measurable maps k and Ψ. We then see that ν̌ defined by

ν̌s(α) := k(α)1(Ťn ,Ťn+1]
(s)Ψ(s, Ť1, . . . , Ťn, Ǎ1, . . . , Ǎn)

is such that JR(t, x, π, ν) = J̌R(t, x, π, ν̌).

Step II. Proof of the inequality V (t, x, π) ≥ V R(t, x, π). We shall exploit Proposition 4.1 in [4],

for which we need to introduce a specific probabilistic setting for the randomized problem.

Substep 1. Canonical probabilistic setting for the randomized McKean-Vlasov control problem.

Recall that the Polish space A can be countable or uncountable, and in this latter case it is

Borel-isomorphic to R (see Corollary 7.16.1 in [7]). Then, in both cases, it can be proved (see

the beginning of Section 4.1 in [4]) that there exists a surjective measurable map ι : R → A and

a finite positive measure λ′ on (R,B(R)) with full topological support, such that λ = λ′ ◦ ι−1

and λ′ is diffuse, namely λ′({r}) = 0 for every r ∈ R.
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Now, consider the canonical probability space (Ω′,F ′,P′) of a marked point process on R+×R

associated to a Poisson random measure with compensator λ′(dr) dt. In other words, ω′ ∈ Ω′

is a double sequence ω′ = (tn, rn)n≥1 ⊂ (0,∞) × R, with tn < tn+1 ր ∞. We denote by

(T ′
n, R

′
n)n≥1 the canonical marked point process defined as (T ′

n(ω
′), R′

n(ω
′)) = (tn, rn), and by

ζ ′ =
∑

n≥1 δ(T ′
n,R

′
n)

the canonical random measure. F ′ is the σ-algebra generated by the sequence

(T ′
n, R

′
n)n≥1. P′ is the unique probability on F ′ under which ζ ′ has compensator λ′(dr) ds.

Finally, we complete (Ω′,F ′,P′) and, to simplify the notation, we still denote its completion by

(Ω′,F ′,P′).
Set A′

n = ι(R′
n) and µ

′ =
∑

n≥1 δ(T ′
n,A′

n)
. Then µ′ is a Poisson random measure on (Ω′,F ′,P′)

with compensator λ(dα) ds. Proceeding along the same lines as in Section 3, we define, starting

from (Ω,F ,P) and (Ω′,F ′,P′), a new setting for the randomized problem where the objects

(Ω1,F1,P1), (Ω̄, F̄ , P̄), Ḡ, B̄, µ̄, F̄B = (F̄B
s )s≥0, F

µ = (Fµ
s )s≥0, F̄

B,µ = (F̄B,µ
s )s≥0, (Tn,An)n≥1,

Ī, X̄t,ξ̄, X̄t,x,π, V, Pν , P̄ν , JR(t, x, π, ν), V R(t, x, π) are replaced respectively by (Ω′,F ′,P′),
(Ω̌, F̌ , P̌), Ǧ, B̌, µ̌, F̌B = (F̌B

s )s≥0, F
µ′

= (Fµ′

s )s≥0, F̌
B,µ = (F̌B,µ

s )s≥0, (Ťn, Ǎn)n≥1, Ǐ, X̌
t,ξ̌,

X̌t,x,π, V̌, Pν̌ , P̌ν̌ , J̌R(t, x, π, ν̌), V̌ R(t, x, π), with ξ̌(ω, ω′) := ξ(ω), so that ξ̌ ∈ L2(Ω̌, Ǧ, P̌;Rn)

and π = Pξ̌ under P̌.

Substep 2. Value of the original McKean-Vlasov control problem. F̌B,µ∞ = (F̌B,µ∞
s )s≥0 be the

P̌-completion of the filtration (FB
s ⊗ F ′)s≥0, and F̌ ′ the canonical extension of F ′ to Ω̌. We

define the set ǍB,µ∞ of all F̌B,µ∞-progressive processes α̌ : Ω̌× [0, T ] → A. For every α̌ ∈ ǍB,µ∞ ,

we denote (X̌t,ξ̌,α̌
s , X̌t,x,π,α̌

s )s∈[t,T ] the unique continuous (F̌B,µ∞
s ∨ Ǧ)s-adapted solution to the

following system of equations:

dX̌t,ξ̌,α̌
s = b

(

s, X̌t,ξ̌,α̌
s ,P

F̌µ
s

X̌t,ξ̌,α̌
s

, α̌s

)

ds + σ
(

s, X̌t,ξ̌,α̌
s ,P

F̌µ
s

X̌t,ξ̌,α̌
s

, α̌s

)

dB̌s, X̌t,ξ̌,α̌
t = ξ̌, (3.10)

dX̌t,x,π,α̌
s = b

(

s, X̌t,x,π,α̌
s ,P

F̌µ
s

X̌t,ξ̌,α̌
s

, α̌s

)

ds+ σ
(

s, X̌t,x,π,α̌
s ,P

F̌µ
s

X̌t,ξ̌,α̌
s

, α̌s

)

dB̌s, X̌t,x,π,α̌
t = x, (3.11)

for all s ∈ [t, T ], where P
F̌µ

s

X̌t,ξ̌,α̌
s

denotes the regular conditional distribution of the random variable

X̌t,ξ̌,α̌
s : Ω̌ → Rn with respect to F̌µ

s . We also define (Ě denotes the P̌-expected value)

J̌(t, x, π, α̌) = Ě

[
∫ T

t
f
(

s, X̌t,x,π,α̌
s ,P

F̌µ
s

X̌t,ξ̌,α̌
s

, α̌s

)

ds+ g
(

X̌t,x,π,α̌
T ,P

F̌
µ
T

X̌
t,ξ̌,α̌
T

)

]

,

and

V̌ (t, x, π) = sup
α̌∈ǍB,µ∞

J̌(t, x, π, α̌).

Let us prove that V (t, x, π) = V̌ (t, x, π).

The inequality V (t, x, π) ≤ V̌ (t, x, π) is obvious. Indeed, every α ∈ A admits an obvious

extension α̌(ω, ω′) := α(ω) to Ω̌. Notice that α̌ ∈ ǍB,µ∞ . We also observe that X̌t,ξ̌,α̌
s (ω, ω′) =

Xt,ξ,α
s (ω), for P̌-almost every (ω, ω′) ∈ Ω̌. Therefore P

F̌µ
s

X̌t,ξ̌,α̌
s

is equal P̌-a.s. to PXt,ξ,α
s

. Then,

X̌t,x,π,α̌
s (ω, ω′) = Xt,x,π,α

s (ω), for P̌-almost every (ω, ω′) ∈ Ω̌. As a consequence, we see that

J(t, x, π, α) = J̌(t, x, π, α̌).

To prove the other inequality, let α̃ ∈ ǍB,µ∞ . Then, there exists an A-valued (FB
s ⊗F ′)s≥0-

progressive process α̌ : Ω̌ × [0, T ] → A satisfying α̌ = α̃, dP̌ ds-a.e., so that J̌(t, x, π, α̌) =

J̌(t, x, π, α̃). Moreover, for every ω′ ∈ Ω′ the process αω′
, given by αω′

s (ω) := α̌s(ω, ω
′), is

FB-progressive.

16



Now, for every ω′ ∈ Ω′, consider the solution (Xt,ξ,αω′

s ,Xt,x,π,αω′

s )s∈[t,T ] to (2.3)-(2.4) with α

replaced by αω′
, namely

dXt,ξ,αω′

s = b
(

s,Xt,ξ,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)

ds + σ
(

s,Xt,ξ,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)

dBs,

dXt,x,π,αω′

s = b
(

s,Xt,x,π,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)

ds+ σ
(

s,Xt,x,π,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)

dBs.

On the other hand, since (X̌t,ξ̌,α̌
s , X̌t,x,π,α̌

s )s∈[t,T ] is the solution to (3.10)-(3.11), we have, for

P′-a.e. ω′ ∈ Ω′,

dX̌t,ξ̌,α̌
s (·, ω′) = b

(

s, X̌t,ξ̌,α̌
s (·, ω′),PF̌µ

s

X̌t,ξ̌,α̌
s

(·, ω′), α̌s(·, ω′)
)

ds

+ σ
(

s, X̌t,ξ̌,α̌
s (·, ω′),PF̌µ

s

X̌t,ξ̌,α̌
s

(·, ω′), α̌s(·, ω′)
)

dBs,

dX̌t,x,π,α̌
s (·, ω′) = b

(

s, X̌t,x,π,α̌
s (·, ω′),PF̌µ

s

X̌t,ξ̌,α̌
s

(·, ω′), α̌s(·, ω′)
)

ds

+ σ
(

s, X̌t,x,π,α̌
s (·, ω′),PF̌µ

s

X̌t,ξ̌,α̌
s

(·, ω′), α̌s(·, ω′)
)

dBs.

Notice that, for P′-a.e. ω′ ∈ Ω′ we have that P
F̌µ

s

X̌t,ξ̌,α̌
s

(·, ω′) is equal P-a.s. to P
X̌t,ξ̌,α̌

s (·, ω′)
, the law

under P of the random variable X̌t,ξ̌,α̌
s (·, ω′) : Ω → Rn

Recalling the identity αω′

s = α̌s(·, ω′), we see that, for P′-a.e. ω′ ∈ Ω′, (Xt,ξ,αω′

s ,Xt,x,π,αω′

s )s∈[t,T ]

and (X̌t,ξ̌,α̌
s (·, ω′), X̌t,x,π,α̌

s (·, ω′))s∈[t,T ] solve the same system of equations. Then, by path-

wise uniqueness, for P′-a.e. ω′ ∈ Ω′, we have Xt,ξ,αω′

s (ω) = X̌t,ξ̌,α̌
s (ω, ω′) and Xt,x,π,αω′

s (ω) =

X̌t,x,π,α̌
s (ω, ω′), for all s ∈ [t, T ], P(dω)-almost surely. Therefore, by Fubini’s theorem,

J̌(t, x, π, α̌) =

∫

Ω′

E

[
∫ T

t
f
(

s,Xt,x,π,αω′

s ,P
Xt,ξ,αω′

s

, αω′

s

)

ds+ g
(

Xt,x,π,αω′

T ,P
X

t,ξ,αω′

T

)

]

P′(dω′)

=

∫

Ω′

J(t, x, π, αω′

)P′(dω′) ≤ V (t, x, π).

Recalling that J̌(t, x, π, α̃) = J̌(t, x, π, α̌), we deduce that J̌(t, x, π, α̃) ≤ V (t, x, π). Taking the

supremum over α̃ ∈ ǍB,µ∞ , we conclude that V̌ (t, x, π) ≤ V (t, x, π).

Substep 3. Proof of the inequality V (t, x, π) ≥ V R(t, x, π). Let ν̌ ∈ V̌ . By Lemma 4.3 in [4]

there exists a sequence (Ť ν̌
n , Ǎν̌

n)n≥1 on (Ω′,F ′,P′) such that:

• (Ť ν̌
n , Ǎν̌

n) takes values in (0,∞) ×A;

• Ť ν̌
n < Ť ν̌

n+1 ր ∞;

• Ť ν̌
n is an Fµ′

-stopping time and Ǎν̌
n is Fµ′

Ť ν̌
n

-measurable;

• the law of (Ť ν̌
n , Ǎν̌

n)n≥1 under P′ coincides with the law of (Ťn, Ǎn)n≥1 under Pν̌.

Let α̌ν̌ : Ω̌× [0, T ] → A be given by (ᾱ was introduced in (3.3))

α̌ν̌
s (ω, ω

′) = ᾱs(ω) 1[0,Ť ν̌
1 (ω′))(s) +

∑

n≥1

(Ǎν̌
n(ω

′))s∧T (ω) 1[Ť ν̌
n (ω′),Ť ν̌

n+1(ω
′))(s).

Notice that α̌ν̌ ∈ ǍB,µ∞ . For every n ≥ 1, set α̌n,s(ω, ω
′) := (Ǎn(ω

′))s(ω) and α̌ν̌
n,s(ω, ω

′) :=

(Ǎν̌
n(ω

′))s(ω), for all s ∈ [0, T ]. Notice that the law of (α̌n,s)s∈[0,T ] under P̌
ν̌ coincides with the
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law of (α̌ν̌
n,s)s∈[0,T ] under P̌ (to see this, we can suppose, by an approximation argument, that

the A-valued random variables Ǎn and Ǎν̌
n take only a finite number of values). It follows that

the law of Ǐ under P̌ν̌ coincides with the law of α̌ν̌ under P̌.

More generally, for every n ≥ 1, the law of (ξ̌, B̌, α̌n,·) under P̌ν̌ is equal to the law

of (ξ̌, B̌, α̌ν̌
n,·) under P̌. Therefore, the law of (ξ̌, B̌, Ǐ) under P̌ν̌ coincides with the law of

(ξ̌, B̌, α̌ν̌) under P̌. This implies that the law of (X̌t,ξ̌ , X̌t,x,π, Ǐ) under P̌ν̌ is equal to the law of

(X̌t,ξ̌,α̌ν̌
, X̌t,x,π,α̌ν̌

, α̌ν̌) under P̌. It follows that J̌R(t, x, π, ν̌) = J̌(t, x, π, α̌ν̌). In particular, we

have

sup
ν̌∈V̌

J̌R(t, x, π, ν̌) = sup
α̌ν̌

ν̌∈V̌

J̌(t, x, π, α̌ν̌ ).

Since the left-hand side is equal to V̌ R(t, x, π), while the right-hand side is clearly less than or

equal to V̌ (t, x, π), we get V̌ R(t, x, π) ≤ V̌ (t, x, π). Recalling from step I that V R(t, x, π) =

V̌ R(t, x, π) and from substep 2 that V̌ (t, x, π) = V (t, x, π), we conclude V R(t, x, π) ≤ V (t, x, π).

Step III. Proof of the inequality V (t, x, π) ≤ V R(t, x, π). The proof of this step is based on

Proposition A.1 in [4] (notice, however, that we will need to use some results from the proof of

this Proposition, not only from its statement). More precisely, the set Ω appearing in Proposition

A.1 of [4] is the empty set Ω = ∅ in our context, so that the product probability space (Ω̃, F̃ ,Q)

coincides with (Ω′,F ′,P′), which is some suitably defined probability space (see Appendix A in

[4] for the definition of (Ω′,F ′,P′); here, we do not need to know the structure of (Ω′,F ′,P′)).

Fix α̂ ∈ A and denote by α : [0, T ] → A the map αs = α̂, for every s ∈ [0, T ]. By Proposition

A.1 in [4] we have that, for every ℓ ∈ N\{0}, there exists a marked point process (T ℓ
n,Aℓ

n)n≥1

on (Ω′,F ′,P′) such that (ᾱ was introduced in (3.3))

T ℓ
0 = 0, Aℓ

0 = ᾱ, Iℓ
s(ω

′) =
∑

n≥0

Aℓ
n(ω

′) 1[T ℓ
n(ω

′),T ℓ
n+1(ω

′))(s), for all s ≥ 0

and

E′
[
∫ T

0
ρ̃(Iℓ

s,αs) ds

]

<
1

ℓ
, (3.12)

where E′ denotes the P′-expected value. Set µℓ =
∑

n≥1 δ(T ℓ
n,Aℓ

n)
the random measure associated

to (T ℓ
n,Aℓ

n)n≥1, and denote Fµℓ = (Fµℓ
s )s≥0 the filtration generated by µℓ. Then, by Proposition

A.1 of [4] we have that the Fµℓ -compensator of µℓ under P
′ is given by νℓs(α)λ(dα) ds for some

P(Fµℓ)⊗ B(A)-measurable map νℓ : Ω′ × R+ ×A → R+ satisfying

0 < inf
Ω′×[0,T ]×A

νℓ ≤ sup
Ω′×[0,T ]×A

νℓ < ∞. (3.13)

Noting that the definition of νℓ on Ω′ × (T,∞)×A is not relevant in order to guarantee (3.12),

we can assume that νℓ ≡ 1 on Ω′ × (T,∞)×A.

Observe that

E′
[
∫ T

0
ρ̃(Iℓ

s,αs) ds

]

=
∑

n≥0

E′
[

1{T ℓ
n<T}

∫ T ℓ
n+1∧T

T ℓ
n

E

[
∫ T

0
ρ((Aℓ

n)r, α̂r) dr

]

ds

]

<
1

ℓ
.

On the other hand, let

Ĩℓs(ω, ω
′) =

∑

n≥0

(Aℓ
n(ω

′))s∧T (ω) 1[T ℓ
n(ω

′),T ℓ
n+1(ω

′))(s), for all s ≥ 0.
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Our aim is to prove that

ρ̃Q(Ĩℓ, α̂) := E′
[

E

[
∫ T

0
ρ(Ĩℓr , α̂r) dr

]]

ℓ→∞−→ 0. (3.14)

Digression. Estimate for the series
∑

n≥0 P
′(T ℓ

n < T ). We recall from the proof of Proposition

A.1 in [4] that the sequence (T ℓ
n)n≥0 is the disjoint union of (Rm

n )n≥1 and (T k
n )n≥0 (we refer to

the proof of Proposition A.1 in [4] for all unexplained notations), namely

∑

n≥0

P′(T ℓ
n < T

)

=
∑

n≥1

P′(Rm
n < T

)

+
∑

n≥0

P′(T k
n < T

)

. (3.15)

We also recall that T k
n − T k

n−1 has an exponential distribution with parameter k−1λ(A). Then,

it is easy to prove by induction on n, the estimate

P′(T k
n < T

)

≤
(

1− e−k−1λ(A)T
)n
. (3.16)

On the other hand, concerning the sequence (Rm
n )n≥1, we begin noting that since α is constant

and identically equal to α̂, the sequence of deterministic times (tn)n≥0 appearing in the proof of

Proposition A.1 in [4] can be taken as follows: t0 = 0, t1 ∈ (0, 1
3ℓ ∧ T ), and tn = T + n − 2 for

every n ≥ 2. Therefore Rm
n ≥ T for all n ≥ 2, while Rm

1 = t1 +V m
1 , where V m

1 is an exponential

random variable with parameter λ1m > m. In particular, we have

P′(Rm
1 < T

)

= P′(V m
1 < T − t1

)

= 1− e−λ1m(T−t1) ≤ 1. (3.17)

Plugging (3.16) and (3.17) into (3.15), we obtain

∑

n≥0

P′(T ℓ
n < T

)

≤ 1 +
∑

n≥0

(

1− e−k−1λ(A)T
)n ≤ 1 + ek

−1λ(A)T ≤ 1 + eλ(A)T . (3.18)

Continuation of the proof of Step III. We can now prove (3.14). In particular, we have,

using (3.18),

ρ̃Q(Ĩℓ, α̂) = E′
[

E

[
∫ T

0
ρ(Ĩℓr , α̂r) dr

]]

=
∑

n≥0

E′
[

1{T ℓ
n<T}E

[
∫ T ℓ

n+1∧T

T ℓ
n

ρ((Aℓ
n)r, α̂r) dr

]]

=
∑

n≥0

E′
[

1{T ℓ
n<T}

1

T ℓ
n+1 ∧ T − T ℓ

n

∫ T ℓ
n+1∧T

T ℓ
n

E

[
∫ T ℓ

n+1∧T

T ℓ
n

ρ((Aℓ
n)r, α̂r) dr

]

ds

]

=
∑

n≥0

E′
[

1{T ℓ
n+1∧T−T ℓ

n≥1/
√
ℓ}1{T ℓ

n<T}
1

T ℓ
n+1 ∧ T − T ℓ

n

∫ T ℓ
n+1∧T

T ℓ
n

E

[
∫ T ℓ

n+1∧T

T ℓ
n

ρ((Aℓ
n)r, α̂r) dr

]

ds

]

+
∑

n≥0

E′
[

1{T ℓ
n+1∧T−T ℓ

n<1/
√
ℓ}1{T ℓ

n<T}
1

T ℓ
n+1 ∧ T − T ℓ

n

∫ T ℓ
n+1∧T

T ℓ
n

E

[
∫ T ℓ

n+1∧T

T ℓ
n

ρ((Aℓ
n)r, α̂r) dr

]

ds

]

≤
√
ℓ
∑

n≥0

E′
[

1{T ℓ
n<T}

∫ T ℓ
n+1∧T

T ℓ
n

E

[
∫ T

0
ρ((Aℓ

n)r, α̂r) dr

]

ds

]

+
1√
ℓ

∑

n≥0

P′(T ℓ
n < T

)

=
√
ℓE′

[
∫ T

0
ρ̃(Iℓ

s,αs) ds

]

+
1√
ℓ

∑

n≥0

P′(T ℓ
n < T

)
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≤
√
ℓE′

[
∫ T

0
ρ̃(Iℓ

s,αs) ds

]

+
1 + eλ(A)T

√
ℓ

≤ 2 + eλ(A)T

√
ℓ

,

which yields (3.14).

We consider now the product probability space (Ω×Ω′,F ⊗F ′,P⊗P′), which we still denote

(Ω̃, F̃ ,Q) (by an abuse of notation, since according to Proposition A.1 in [4], (Ω̃, F̃ ,Q) coincides

with (Ω′,F ′,P′)). We complete the probability space (Ω̃, F̃ ,Q) and, to simplify the notation,

we still denote by (Ω̃, F̃ ,Q) its completion. Let ξ̃, B̃, ν̃ℓ be the canonical extensions of ξ, B,

νℓ to Ω̃. On the other hand, we still denote by µℓ the extension of µℓ to Ω̃. We denote by

µ̃ℓ(ds dα) = µℓ(ds dα) − ν̃ℓs(α)λ(dα)ds the compensated martingale measure associated to µℓ.

We also denote by F̃B,µℓ = (F̃B,µℓ
s )s≥0 (resp. F̃µℓ = (F̃µℓ

s )s≥0) the Q-completion of the filtration

generated by B̃ and µℓ (resp. µℓ). For every ℓ ∈ N\{0}, we define the Doléans exponential

κ̃ℓs = Es
(
∫ ·

0

∫

A
(ν̃ℓr(α)

−1 − 1) µ̃ℓ(dr dα)

)

, for all s ∈ [0, T ].

By (3.13) we see that (κ̃ℓs)s∈[0,T ] is an F̃B,µℓ-martingale under Q, so that we can define on (Ω̃, F̃)

a probability P̃ℓ equivalent to Q by dP̃ℓ = κ̃ℓT dQ. By the Girsanov theorem, µℓ has F̃B,µℓ-

compensator given by λ(dα) ds under P̃ℓ. Moreover, B̃ remains a Brownian motion under P̃ℓ,

and π = Pξ̃ under P̃ℓ.

Let G̃ be the canonical extension of G to Ω̃ and denote (X̃t,ξ̃,ℓ
s , X̃t,x,π,ℓ

s )s∈[t,T ] the unique

continuous (F̃B,µℓ
s ∨ G̃)-adapted solution to equations (3.4)-(3.5) on (Ω̃, F̃ , P̃ℓ) with ξ̄, B̄, Ī, F̄µ

s

replaced by ξ̃, B̃, Ĩℓ, F̃µℓ
s . Finally, we define in an obvious way the following objects: Ṽℓ, P̃

ν̃
ℓ ,

Ẽν̃
ℓ , J̃

R
ℓ (t, x, π, ν̃), Ṽ R

ℓ (t, x, π).

For every ℓ we have constructed a new probabilistic setting for the randomized problem,

where the objects (Ω1,F1,P1), (Ω,F ,P), Ḡ, B̄, µ̄, Ī, X̄t,ξ̄, X̄t,x,π, V, JR(t, x, π, ν), V R(t, x, π)
are replaced respectively by (Ω′,F ′,P′), (Ω̃, F̃ , P̃ℓ), G̃, B̃, µℓ, Ĩℓ, X̃t,ξ̃,ℓ, X̃t,x,π,ℓ, Ṽℓ, J̃

R
ℓ (t, x, π, ν̃),

Ṽ R
ℓ (t, x, π).

Now, let us prove that J̃R
ℓ (t, x, π, ν̃ℓ) → J(t, x, π, α̂) as ℓ → ∞. To this end, notice that

P̃ν̃ℓ

ℓ ≡ Q. Therefore J̃R
ℓ (t, x, π, ν̃ℓ) can be written in terms of EQ as follows:

J̃R
ℓ (t, x, π, ν̃ℓ) = EQ

[
∫ T

t
f
(

s, X̃t,x,π,ℓ
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

ds+ g
(

X̃t,x,π,ℓ
T ,P

F̃
µℓ
T

X̃
t,ξ̃,ℓ
T

)

]

.

On the other hand, let F̃B = (F̃B
s )s≥0 be the Q-completion of the filtration generated by B̃,

and α̃ the canonical extension of α̂ to Ω̃. Then, we denote by (X̃t,ξ̃,α̃
s , X̃t,x,π,α̃

s )s∈[t,T ] the unique

continuous (F̃B
s ∨ G̃)-adapted solution to equations (2.3)-(2.4) on (Ω̃, F̃ ,Q) with ξ, B, α re-

placed by ξ̃, B̃, α̃. Notice that (X̃t,ξ̃,α̃
s , X̃t,x,π,α̃

s )s∈[t,T ] coincides with the obvious extension of

(Xt,ξ,α̂
s ,Xt,x,π,α̂

s )s∈[t,T ] to Ω̃. Hence, we have

J(t, x, π, α̂) = EQ

[
∫ T

t
f
(

s, X̃t,x,π,α̃
s ,PF̃

µℓ
s

X̃t,ξ̃,α̃
s

, α̃s

)

ds+ g
(

X̃t,x,π,α̃
T ,P

F̃
µℓ
T

X̃
t,ξ̃,α̃
T

)

]

.

Then, it follows that J̃R
ℓ (t, x, π, ν̃ℓ) → J(t, x, π, α̂) as ℓ→ ∞. Indeed, this is a direct consequence

of Lemma C.1, with F̃µ0 := ({∅, Ω̃})s≥0 being the trivial filtration, F̃ℓ := (F̃B,µℓ
s ∨G̃)s≥0 for every

ℓ ≥ 1, F̃0 := (F̃B
s ∨ G̃)s≥0, Ĩ

0 := α̃, X̃t,ξ̃,0 := X̃t,ξ̃,α̃, and X̃t,x,π,0 := X̃t,x,π,α̃.
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We conclude that for every ε > 0 there exists some Lε ∈ N such that, for every ℓ > Lε, we

have

J(t, x, π, α̂)− ε ≤ J̃R
ℓ (t, x, π, ν̃ℓ) ≤ sup

ν̃∈Ṽℓ

J̃R
ℓ (t, x, π, ν̃) =: Ṽ R

ℓ (t, x, π)

Step I

↓
= V R(t, x, π).

From the arbitrariness of ε, we see that J(t, x, π, α̂) ≤ V R(t, x, π). The claim follows taking the

supremum over α̂ ∈ A. 2

Remark 3.4 Let V1,t ⊂ V be the set of ν ∈ V such that ν ≡ 1 on Ω× [0, t) ×A. Then

V (t, x, π) = sup
ν∈V1,t

JR(t, x, π, ν), (3.19)

for all (t, x, π) ∈ [0, T ]×Rn × P2(R
n). Indeed, by step II of the proof of Theorem 3.1, we have

V (t, x, π) ≥ V R(t, x, π) ≥ supν∈V1,t
JR(t, x, π, ν). Let us prove the other inequality. We begin

noting that in Lemma C.1, the convergence EQ[
∫ T
t ρ̃(Ĩℓs, Ĩ

0
s ) ds] → 0 as ℓ → ∞ is needed, rather

than EQ[
∫ T
0 ρ̃(Ĩℓs , Ĩ

0
s ) ds] → 0. In other words, the behavior of (Ĩℓs)s∈[0,T ] on the interval [0, t) is

not relevant. Therefore, proceeding as in step III of the proof of Theorem 3.1, we see that we can

take ν̃ℓ ≡ 1 on Ω̃× [0, t) ×A, in order to guarantee the convergence EQ[
∫ T
t ρ̃(Ĩℓs , α̂s) ds] → 0 as

ℓ→ ∞. Then, from the same proof of Lemma C.1, we conclude that J̃R(t, x, π, ν̃ℓ) → J(t, x, π, α̂)

as ℓ → ∞. This implies the validity of the other inequality V (t, x, π) ≤ supν∈V1,t
JR(t, x, π) and

proves (3.19). 2

4 Feynman-Kac representation: randomized equation

In the present section we introduce, for every (t, x, ξ̄) ∈ [0, T ]×Rn ×L2(Ω̄, Ḡ, P̄;Rn), a forward-

backward stochastic differential system of equations, which provides a probabilistic represen-

tation for the value V (t, x, π), with π = Pξ under P̄. In other words, we derive a nonlinear

Feynman-Kac formula for the value function V in (2.7) of the McKean-Vlasov control problem.

We firstly introduce the following spaces, for every t ∈ [0, T ].

• S2(t, T ), the set of real-valued càdlàg Fµ-adapted processes Y = (Ys)s∈[t,T ], with Y : Ω1 ×
[t, T ] → R, satisfying ‖Y ‖2S2(t,T ) := E1

[

supt≤s≤T |Ys|2
]

< ∞.

• L2
µ̃(t, T ), the set of real-valued P(Fµ) ⊗ B(A)-measurable maps U = (Us(α))s∈[t,T ], α∈A,

with U : Ω1 × [t, T ]×A → R, satisfying ‖U‖2
L2
µ̃(t,T )

:= E1
[ ∫ T

t

∫

A |Us(α)|2λ(dα) ds
]

< ∞.

• K2(t, T ), the set of nondecreasing Fµ-predictable processes K = (Ks)s∈[t,T ], with K : Ω1 ×
[t, T ] → R+, satisfying K ∈ S2(t, T ) and Kt = 0.

Given (t, x, ξ̄) ∈ [0, T ]×Rn×L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄, consider on (Ω1,F1,Fµ,P1)

the following backward stochastic differential equation with constrained jumps over [t, T ]:






























Ys = E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

+

∫ T

s
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr +KT −Ks

−
∫ T

s

∫

A
Ur(α)µ(dr dα), s ∈ [t, T ],

Us(α) ≤ 0, dP1 ds λ(dα)-a.e. on Ω1 × [t, T ]×A.

(4.1)
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Notice that E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

, as well as E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

, is a random variable on

(Ω1,F1,P1).

Equations (3.3)-(3.4)-(3.5)-(4.1) constitute a forward-backward stochastic differential system

of equations. We also observe that equation (4.1) depends on ξ only through its law π = Pξ.

We now prove that there exists a unique solution (Y t,x,π, U t,x,π,Kt,x,π) ∈ S2(t, T ) × L2
µ̃(t, T ) ×

K2(t, T ) to (4.1), which is minimal in the following sense: if (Ȳ , Ū , K̄) ∈ S2(t, T ) × L2
µ̃(t, T ) ×

K2(t, T ) is another solution to (4.1), then the inequality Y t,x,π ≤ Ȳ holds on Ω1 × [t, T ], up to

a P1-evanescent set.

Theorem 4.1 Under Assumption (A1), for every (t, x, ξ̄) ∈ [0, T ]×Rn ×L2(Ω̄, Ḡ, P̄;Rn), with

π = Pξ under P̄, there exists a unique minimal solution (Y t,x,π, U t,x,π,Kt,x,π) ∈ S2(t, T ) ×
L2
µ̃(t, T ) × K2(t, T ) to (4.1), with Y t,x,π

t equal P1-a.s. to a constant. In addition, V admits the

Feynman-Kac representation

V (t, x, π) = Y t,x,π
t (4.2)

P1-a.s., for all (t, x, π) ∈ [0, T ] × Rn × P2(R
n). Moreover, we have

Y t,x,π
t = sup

ν∈V
Eν

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y t,x,π
s

]

(4.3)

= sup
ν∈V

Ēν

[
∫ s

t
f(r, X̄t,x,π

r ,P
F̄µ

r

X̄t,ξ̄
r

, Īr) dr + Y t,x,π
s

]

,

P1-a.s., for all s ∈ [t, T ].

Proof. Existence and uniqueness of the minimal solution to (4.1). Fix (t, x, ξ̄) ∈ [0, T ] × Rn ×
L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄. Consider, for every n ∈ N, the following unconstrained

backward stochastic differential equation on [t, T ]:

Ys = E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

+

∫ T

s
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + n

∫ T

s

∫

A
(Ur(α))+ λ(dα) dr

−
∫ T

s

∫

A
Ur(α)µ(dr dα). (4.4)

By Lemma 2.4 in [27], there exists a unique solution (Y n,t,x,π, Un,t,x,π) ∈ S2(t, T )× L2
µ̃(t, T ) to

the above equation.

For every n ∈ N, let V̂n denote the set of P(Fµ)⊗B(A)-measurable maps ν̂ : Ω1×R+×A →
(0, n], which are not necessarily bounded away from zero. Then, let us prove the following

formula:

Y n,t,x,π
t̄

= ess sup
ν̂∈V̂n

Eν̂

[
∫ s

t̄
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y n,t,x,π
s

∣

∣

∣

∣

Fµ
t̄

]

, (4.5)

for all t̄, s ∈ [t, T ], with t̄ ≤ s. Let ν̂ ∈ V̂ (see Remark 3.2 for the definition of V̂). Then,

considering (4.4) between t̄ and s, and taking the Pν̂-conditional expectation with respect to

Fµ
t̄
, we obtain

Y n,t,x,π
t̄

= Eν̂

[
∫ s

t̄
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y n,t,x,π
s (4.6)

+

∫ s

t̄

∫

A

[

n(Ur(α)
n,t,x,π)+ − Un,t,x,π

r (α)ν̂r(α)
]

λ(dα) dr

∣

∣

∣

∣

Fµ
t̄

]

.
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Since ν̂r(α) ∈ (0, n], the last term inside the expectation is nonnegative. Therefore

Y n,t,x,π
t̄

≥ ess sup
ν̂∈V̂n

Eν̂

[
∫ s

t̄
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y n,t,x,π
s

∣

∣

∣

∣

Fµ
t̄

]

. (4.7)

To prove the other inequality, define, for every ε ∈ (0, n], the map ν̂n,ε as

ν̂n,εr (α) = n 1{Un,t,x,π
r (α)≥0} + ε 1{−1≤Un,t,x,π

r (α)<0} +
ε

|Un,t,x,π
r (α)|

1{Un,t,x,π
r (α)<−1},

on Ω1 × [t, T ] ×A, and ν̂n,ε ≡ 1 on Ω1 × ([0, t) ∪ (T,∞)) × A. Notice that ν̂n,ε belongs to V̂n,

and it is not necessarily bounded away from zero. Taking ν̂ equal to ν̂n,ε in (4.6), we obtain

Y n,t,x,π
t̄

≤ Eν̂n,ε

[
∫ s

t̄
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y n,t,x,π
s

∣

∣

∣

∣

Fµ
t̄

]

+ ε(T − t)λ(A) (4.8)

≤ ess sup
ν̂∈V̂n

[
∫ s

t̄
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y n,t,x,π
s

∣

∣

∣

∣

Fµ
t̄

]

+ ε(T − t)λ(A).

From the arbitrariness of ε we get the reverse inequality of (4.7), from which we deduce the

validity of (4.5). In particular, when s = T in (4.5), we obtain

Y n,t,x,π
t̄ = ess sup

ν̂∈V̂n

Eν̂

[
∫ T

t̄
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

∣

∣

∣

∣

Fµ
t̄

]

, (4.9)

for all t̄ ∈ [t, T ]. Then, it is easy to see that the following estimate holds:

sup
n
Y n,t,x,π
t̄

< ∞, for all t̄ ∈ [t, T ]. (4.10)

Hence, the existence and uniqueness of the minimal solution to equation (4.1) follows from

Theorem 2.1 in [19] (apart from the fact that Kt,x,π
t = 0, as required in the definition of K2(t, T ),

which will be proved later). Indeed, (4.1) can be seen as an equation on the entire interval

[0, T ], with terminal condition E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

and generator E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

1[t,T ](r).

Assumption (H0) in [19] holds under Assumption (A1). Moreover, Assumption (H1) in [19] is

imposed only to guarantee the validity of (4.10), which in our case follows directly from formula

(4.9), since f does not depend on Y n,t,x,π, Un,t,x,π. It only remains to prove that Kt,x,π
t = 0.

This is clearly true if we show that Y t,x,π
t is equal P1-a.s. to a constant (as a matter of fact, if

Y t,x,π
t is equal P1-a.s. to a constant, then, by uniqueness, Y t,x,π

s = Y t,x,π
t on [0, t], so that Kt,x,π

s

is also constant on [0, t], and, in particular, equal to Kt,x,π
0 = 0). This latter property is proved

below. Finally, for later use, we notice that, according to Theorem 2.1 in [19], the sequence

(Y n,t,x,π
t̄ )n≥0 is nondecreasing (this is a direct consequence of formula (4.9), since V̂n ⊂ V̂n+1)

and converges pointwise P1-a.s. to Y t,x,π
t̄ , for all t̄ ∈ [t, T ].

Proof of (4.2), in particular Y t,x,π
t is equal P1-a.s. to a constant. Notice that Y t,x,π

t is Fµ
t -

measurable, therefore it is not a priori clear that it is P1-a.s. a constant. For every n ∈ N,

consider (4.5) with t̄ = t and s = T :

Y n,t,x,π
t = ess sup

ν̂∈V̂n

Eν̂

[
∫ T

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

∣

∣

∣

∣

Fµ
t

]

.
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Letting n→ ∞, recalling that Y n,t,x,π
t ր Y t,x,π

t , P1-a.s., and noting that V̂n ⊂ V̂n+1 ⊂ ∪nV̂n = V̂,
we obtain

Y t,x,π
t = ess sup

ν̂∈V̂
Eν̂

[
∫ T

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

∣

∣

∣

∣

Fµ
t

]

. (4.11)

Reasoning as in Remark 3.2, we can show that the right-hand side of (4.11) does not change if

we take the supremum over V. In other words, (4.11) can be equivalently written as follows:

Y t,x,π
t = ess sup

ν∈V
Eν

[
∫ T

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

∣

∣

∣

∣

Fµ
t

]

. (4.12)

From Corollary D.1 it follows that the right-hand side of (4.12) is equal P1-a.s. to V (t, x, π),

which yields Y t,x,π
t = V (t, x, π), P1-a.s..

Proof of formula (4.3). Let ν ∈ V. Consider (4.1) between t and s, and take the expectation

with respect to Eν , then (recalling that Kt,x,π is nondecreasing and U t,x,π is nonpositive)

Y t,x,π
t ≥ Eν

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y t,x,π
s

]

. (4.13)

From the arbitrariness of ν ∈ V, we get the first inequality. To prove the reverse inequality,

considering (4.8) with t̄ = t, and taking the expectation Eν̂n,ε
, we obtain

Eν̂n,ε[

Y n,t,x,π
t

]

≤ Eν̂n,ε

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y n,t,x,π
s

]

+ ε(T − t)λ(A)

≤ sup
ν̂∈V̂

Eν̂

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y t,x,π
s

]

+ ε(T − t)λ(A)

= sup
ν∈V

Eν

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y t,x,π
s

]

+ ε(T − t)λ(A),

where the last equality can be proved arguing as in Remark 3.2. From the definition of ν̂n,ε, we

see that κν̂
n,ε

t = 1, therefore Eν̂n,ε
[Y n,t,x,π

t ] = E1[Y n,t,x,π
t ]. Hence

E1
[

Y n,t,x,π
t

]

≤ sup
ν∈V

Eν

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y t,x,π
s

]

+ ε(T − t)λ(A).

Recall that the sequence (Y n,t,x,π
t )n≥0 is nondecreasing and converges pointwise P1-a.s. to Y t,x,π

t .

In particular, Y 0,t,x,π
t ≤ Y n,t,x,π

t ≤ Y t,x,π
t , for every n ∈ N. Therefore, letting n → ∞ and using

Lebesgue’s dominated convergence theorem, we obtain

Y t,x,π
t = E1

[

Y t,x,π
t

]

≤ sup
ν∈V

Eν

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y t,x,π
s

]

+ ε(T − t)λ(A).

Sending ε→ 0, we get

Y t,x,π
t ≤ sup

ν∈V
Eν

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y t,x,π
s

]

,

which, together with (4.13), gives formula (4.3) and concludes the proof. 2
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5 Randomized dynamic programming principle

The present section is devoted to the proof of the dynamic programming principle for V in the

randomized framework. Firstly, we prove the flow properties of X̄t,ξ̄ and X̄t,x,π. These in turn

imply the identification E
[

V (s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

)
]

= Y t,x,π
s , P1 -a.s., for all s ∈ [t, T ]. Then, (4.3)

allows to derive the randomized dynamic programming principle for V .

5.1 Flow properties

We begin considering the solution to system (3.4)-(3.5) with more general initial conditions.

More precisely, concerning equation (3.4), for every (t, η̄) ∈ [0, T ] × L2(Ω̄, F̄B,µ
t ∨ Ḡ, P̄;Rn),

consider the following equation:

dX̄t,η̄
s = b

(

s, X̄t,η̄
s ,P

F̄µ
s

X̄t,η̄
s
, Īs

)

ds+ σ
(

s, X̄t,η̄
s ,P

F̄µ
s

X̄t,η̄
s
, Īs

)

dB̄s, X̄t,η̄
t = η̄, (5.1)

for all s ∈ [t, T ]. Concerning equation (3.5), we begin recalling that (P
F̄µ

s

X̄t,η̄
s
)s∈[t,T ] stands for the

stochastic process (Pt,π
s )s∈[t,T ] introduced in Lemma 3.2, with π = Pη̄ under P̄. In the sequel,

when considering equation (3.5), it is more convenient to adopt the notation P
t,π
s instead of

P
F̄µ

s

X̄t,η̄
s
. For every (t, η̄) ∈ [0, T ]×L2(Ω̄, F̄B,µ

t ∨ Ḡ, P̄;Rn) and Π̄: Ω̄ → P2(R
n), with Π̄ measurable

with respect to F̄µ
t and such that Ē[‖Π̄‖22 ] <∞, consider the following equation:

dX̄t,η̄,Π̄
s = b

(

s, X̄t,η̄,Π̄
s ,Pt,Π̄

s , Īs
)

ds + σ
(

s, X̄t,η̄,Π̄
s ,Pt,Π̄

s , Īs
)

dB̄s, X̄t,η̄,Π̄
t = η̄, (5.2)

for all s ∈ [t, T ], where

Pt,Π̄
s (ω̄) := Pt,Π̄(ω̄)

s (ω1), for all (ω̄, s) = (ω, ω1, s) ∈ Ω̄× [t, T ]. (5.3)

Notice that, thanks to Lemma 3.2, the stochastic process (Pt,Π̄
s )s∈[t,T ] is well-defined. In particu-

lar, for every s ∈ [t, T ], Pt,Π̄
s is F̄µ

s -measurable. Under Assumption (A1), we have the following

result, whose standard proof is not reported.

Lemma 5.1 Under Assumption (A1), for every (t, η̄) ∈ [0, T ] × L2(Ω̄, F̄B,µ
t ∨ Ḡ, P̄;Rn) and

Π̄ : Ω̄ → P2(R
n), with Π̄ measurable with respect to F̄µ

t and such that Ē[‖Π̄‖22 ] <∞, there exists

a unique (up to indistinguishability) pair (X̄t,η̄
s , X̄t,η̄,Π̄

s )s∈[t,T ] of continuous (F̄B,µ,t
s ∨Ḡ∨σ(η̄, Π̄))s-

adapted processes solution to equations (5.1)-(5.2), satisfying

Ē

[

sup
s∈[t,T ]

(∣

∣X̄t,η̄
s

∣

∣

2
+

∣

∣X̄t,η̄,Π̄
s

∣

∣

2)
]

< ∞.

Moreover, there exists a positive constant C such that

Ē

[

sup
s∈[t,T ]

∣

∣X̄t,η̄,Π̄
s − X̄t,η̄′,Π̄′

s

∣

∣

2
]

≤ C
(

Ē[|η̄ − η̄′|2] + Ē[W2(Π̄, Π̄
′)2]

)

, (5.4)

for every t ∈ [0, T ], η̄, η̄′ ∈ L2(Ω̄, F̄B,µ
t ∨ Ḡ, P̄;Rn), and any Π̄, Π̄′ : Ω̄ → P2(R

n), with Π̄, Π̄′

measurable with respect to F̄µ
t and such that Ē[‖Π̄‖22 ], Ē[‖Π̄′‖22 ] <∞.

Proof. The proof of the existence and uniqueness of (X̄t,η̄
s , X̄t,η̄,Π̄

s )s∈[t,T ] is standard under

Assumption (A1), and can be done as usual by a fixed point argument. Concerning estimate

(5.4), the proof can be done proceeding as in Lemma 3.1 in [9]. 2
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Remark 5.1 When in equation (5.2) the random variables η̄ and Π̄ are equal P̄-a.s. to some x ∈
Rn and π ∈ P2(R

n), respectively, then (X̄t,η̄,Π̄
s )s∈[t,T ] coincides (up to indistinguishability) with

the stochastic process (X̄t,x,π
s )s∈[t,T ] defined in Section 3. Indeed, (X̄t,η̄,Π̄

s )s∈[t,T ] and (X̄t,x,π
s )s∈[t,T ]

solve the same equation, therefore the claim follows from the uniqueness of the solution. 2

Remark 5.2 Suppose that η̄ and Π̄ in Lemma 5.1 takes only a finite number of values, namely

η̄ =

K
∑

k=0

xk 1Ek
, Π̄ =

K
∑

k=0

πk 1Ek
,

for some K ∈ N, xk ∈ Rn, πk ∈ P2(R
n), Ek ∈ F̄B,µ

t ∨ Ḡ, with (Ek)k=1,...,K being a partition

of Ω̄. Then, by definition of Pt,Π̄
s (formula (5.3)), we have P

t,Π̄
s = P

t,π0
s 1E0 + · · · + P

t,πK
s 1EK

.

Therefore, the stochastic processes (X̄t,x0,π0
s 1E0 + · · · + X̄t,xK ,πK

s 1EK
)s∈[t,T ] and (X̄t,η̄,Π̄

s )s∈[t,T ]

are indistinguishable, since they solve the same stochastic differential equation. 2

Lemma 5.2 Under Assumption (A1), for every (t, s, x, ξ̄) ∈ [0, T ]×[0, T ]×Rn×L2(Ω̄, Ḡ, P̄;Rn),

with t ≤ s and π = Pξ̄ under P̄, we have the flow properties:

X̄s,X̄t,ξ̄
s

r = X̄t,ξ̄
r , (5.5)

X̄
s,X̄t,x,π

s ,P
F̄µ

s

X̄t,ξ̄
s

r = X̄t,x,π
r , (5.6)

for all r ∈ [s, T ], P̄-almost surely.

Proof. Flow property (5.5). Consider the process (X̄s,X̄t,ξ̄
s

r )r∈[s,T ] solution to equation (5.1) with

initial conditions t = s and η̄ = X̄t,ξ̄
s . Since (X̄t,ξ̄

r )r∈[s,T ] solves the same equation, by pathwise

uniqueness we deduce that (X̄s,X̄t,ξ̄
s

r )r∈[s,T ] and (X̄t,ξ̄
r )r∈[s,T ] are indistinguishable, namely (5.5)

holds.

Flow property (5.6). Recall that (P
F̄µ

s

X̄t,ξ̄
s

)s∈[t,T ] stands for the stochastic process (Pt,π
s )s∈[t,T ]

introduced in Lemma 3.2. In the present proof it is more convenient to adopt the notation P
t,π
s

instead of P
F̄µ

s

X̄t,ξ̄
s

. Notice that, by (5.5), we have P
t,π
r = P

s,Pt,π
s

r , for all r ∈ [s, T ], P̄-almost surely.

Therefore

X̄t,x,π
r = X̄t,x,π

s +

∫ r

s
b
(

u, X̄t,x,π
u ,Pt,π

u , Īu
)

du+

∫ r

s
σ
(

u, X̄t,x,π
u ,Pt,π

u , Īu
)

dB̄u

= X̄t,x,π
s +

∫ r

s
b
(

u, X̄t,x,π
u ,Ps,Pt,π

s
u , Īu

)

du+

∫ r

s
σ
(

u, X̄t,x,π
u ,Ps,Pt,π

s
u , Īu

)

dB̄u,

for all r ∈ [s, T ], P̄-a.s.. On the other hand, consider the process (X̄s,X̄t,x,π
s ,Pt,π

s
r )r∈[s,T ] solu-

tion to equation (5.2) with initial conditions t = s, η̄ = X̄t,x,π
s , Π̄ = P

t,π
s . Then, we see that

(X̄s,X̄t,x,π
s ,Pt,π

s
r )r∈[s,T ] and (X̄t,x,π

r )r∈[s,T ] solve the same equation. It follows that they are indis-

tinguishable, namely (5.6) holds. 2

5.2 Randomized dynamic programming principle

We begin proving the following identification result between V and Y t,x,π.
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Lemma 5.3 Under Assumptions (A1) and (A2), for every (t, x, ξ̄) ∈ [0, T ]×Rn×L2(Ω̄, Ḡ, P̄;Rn),

with π = Pξ̄ under P̄, we have

E
[

V (s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

)
]

= Y t,x,π
s ,

P1-a.s., for all s ∈ [t, T ].

Proof. Fix (t, s, x, ξ̄) ∈ [0, T ] × [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with t ≤ s and π = Pξ̄ under

P̄. Using the same notations as in the proof of Theorem 4.1, let us consider, for every n ∈ N,

formula (4.5) with t̄ and s replaced respectively by s and T :

Y n,t,x,π
s = ess sup

ν̂∈V̂n

Eν̂

[
∫ T

s
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

∣

∣

∣

∣

Fµ
s

]

.

Letting n→ ∞, we obtain

Y t,x,π
s = ess sup

ν̂∈V̂
Eν̂

[
∫ T

s
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

∣

∣

∣

∣

Fµ
s

]

.

Reasoning as in Remark 3.2, we can show that the right-hand side of (4.11) does not change if

we take the supremum over V. In other words, (4.11) can be equivalently written as follows:

Y t,x,π
s = ess sup

ν∈V
Eν

[
∫ T

s
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

∣

∣

∣

∣

Fµ
s

]

.

Then, we see that the claim follows if we prove the following equality: P1-a.s.

E
[

V (s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

)
]

= ess sup
ν∈V

Eν

[
∫ T

s
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

g(X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)
]

∣

∣

∣

∣

Fµ
s

]

. (5.7)

As in the proof of Lemma 5.2, it is more convenient to adopt the notation P
t,π
s instead of P

F̄µ
s

X̄t,ξ̄
s

(recall that (P
F̄µ

s

X̄t,ξ̄
s

)s∈[t,T ] stands for the stochastic process (P
t,π
s )s∈[t,T ] introduced in Lemma 3.2).

Then, from the flow properties (5.5) and (5.6), we have

Y t,x,π
s = ess sup

ν∈V
Eν

[
∫ T

s
E
[

f(r, X̄s,X̄t,x,π
s ,Pt,π

s
r ,Ps,Pt,π

s
r , Īr)

]

dr + E
[

g(X̄s,X̄t,x,π
s ,Pt,π

s

T ,Ps,Pt,π
s

T )
]

∣

∣

∣

∣

Fµ
s

]

. (5.8)

Now, notice that X̄t,x,π
s ∈ L2(Ω̄, F̄B,µ

s , P̄;Rn), so that it is the L2-limit (and also pointwise P̄-a.s.)

of a sequence (X̄m)m≥0 ⊂ L2(Ω̄, F̄B,µ
s , P̄;Rn), where each X̄m takes only a finite number of values.

Similarly, Pt,π
s is a random variable P

t,π
s : Ω̄ → P2(R

n) such that Ē[‖Pt,π
s ‖22 ] <∞. Therefore, by

Lemma A.3 there exists a sequence (Pm)m≥0 of F̄B,µ
s -measurable maps Pm : Ω̄ → P2(R

n), with

Ē[‖Pm‖22 ] <∞ and each Pm takes only a finite number values, such that Ē[W2(Pm,P
t,π
s )2] → 0 as

m goes to infinity (and also W2(Pm,P
t,π
s ) → 0 pointwise P̄-a.s.). In particular, for every m ≥ 0,

we have

X̄m =

Km
∑

k=0

xm,k 1Em,k
, Pm =

Km
∑

k=0

πm,k 1Em,k
,

for some Km ∈ N, xm,k ∈ Rn, πm,k ∈ P2(R
n), Em,k ∈ F̄B,µ

s , with (Em,k)k being a partition

of Ω̄. For every m ≥ 0, consider the process (X̄s,X̄m,Pm
r )r∈[s,T ], solution to equation (5.2) with
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initial conditions t = s, η̄ = X̄m, Π̄ = Pm. Recall from Remark 5.2, we have that the stochastic

processes (X̄s,X̄m,Pm
r )r∈[s,T ] and (

∑Km

k=0 X̄
s,xm,k,πm,k
r 1Em,k

)r∈[s,T ] are indistinguishable.

Notice that, for every ν ∈ V, we have, from Corollary D.1, P1-a.s.,

E
[

V (s, X̄m,Pm)
]

=

Km
∑

k=0

E
[

V (s, xm,k, πm,k) 1Em,k

]

=

Km
∑

k=0

E

[

1Em,k
ess sup

ν∈V
Eν

[
∫ T

s
E
[

f
(

r, X̄
s,xm,k ,πm,k
r ,P

s,πm,k
r , Īr

)]

dr

+ E
[

g
(

X̄
s,xm,k,πm,k

T ,P
s,πm,k

T

)]

∣

∣

∣

∣

Fµ
s

]]

= ess sup
ν∈V

Eν

[
∫ T

s
E
[

f
(

r, X̄s,X̄m,Pm
r ,Ps,Pm

r , Īr
)]

dr + E
[

g
(

X̄s,X̄m,Pm

T ,Ps,Pm

T

)]

∣

∣

∣

∣

Fµ
s

]

. (5.9)

From the continuity of the map (y, γ) 7→ V (s, y, γ) stated in Proposition 2.1, and the growth

condition (2.8), we see that

E
[

V (s, X̄m,Pm)
] m→∞−→

P1-a.s.
E
[

V (s, X̄t,x,π
s ,Pt,π

s )
]

. (5.10)

On the other hand, using estimate (5.4) and proceeding as in the proof of inequality (2.18) in

Proposition 2.1, we can prove the following convergence:

ess sup
ν∈V

Eν

[
∫ T

s
E
[

f
(

r, X̄s,X̄m,Pm
r ,Ps,Pm

r , Īr
)]

dr + E
[

g
(

X̄s,X̄m,Pm

T ,Ps,Pm

T

)]

∣

∣

∣

∣

Fµ
s

]

(5.11)

m→∞−→
P1-a.s.

ess sup
ν∈V

Eν

[
∫ T

s
E
[

f
(

r, X̄s,X̄t,x,π
s ,Pt,π

s
r ,Ps,Pt,π

s
r , Īr

)]

dr + E
[

g
(

X̄s,X̄t,x,π
s ,Pt,π

s

T ,Ps,Pt,π
s

T

)]

∣

∣

∣

∣

Fµ
s

]

.

Hence, by (5.10) and (5.11), together with equalities (5.8) and (5.9), we see that (5.7) holds,

therefore the claim follows. 2

We can now state the main result of this section.

Theorem 5.1 Suppose that Assumptions (A1) and (A2) hold. Then, for every (t, s, x, ξ̄) ∈
[0, T ] × [0, T ]× Rn × L2(Ω̄, Ḡ, P̄;Rn), with t ≤ s and π = Pξ̄ under P̄, we have

V (t, x, π) = sup
ν∈V

Eν

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + E
[

V (s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

)
]

]

.

Proof. Fix (t, s, x, ξ̄) ∈ [0, T ] × [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with t ≤ s and π = Pξ̄ under P̄.

Recall that by (4.3) we have, P1-a.s.,

Y t,x,π
t = sup

ν∈V
Eν

[
∫ s

t
E
[

f(r, X̄t,x,π
r ,P

F̄µ
r

X̄t,ξ̄
r

, Īr)
]

dr + Y t,x,π
s

]

.

Then, the claim follows from Lemma 5.3. 2
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A Some convergence results with respect to the 2-Wasserstein metric W2

Lemma A.1 (Skorohod’s representation theorem for W2-convergence) Let (πm)m be a

sequence in P2(R
n) such that W2(πm, π) → 0, for some π ∈ P2(R

n). Then, there exists a

sequence of random variables (ξm)m ⊂ L2(Ω,G,P;Rn), with Pξm = πm, converging pointwise

P-a.s. and in L2(Ω,G,P;Rn) to some ξ ∈ L2(Ω,G,P;Rn), with Pξ = π.

Proof. By Theorem 6.9 and point (i) of Definition 6.8 in [28], we have that W2(πm, π) → 0 is

equivalent to:

πm
m→∞−→
weakly

π and

∫

Rn

|x|2 πm(dx)
m→∞−→

∫

Rn

|x|2 π(dx). (A.1)

Then, by the classical Skorohod representation theorem for weak convergence, there exist random

variables ξm, ξ ∈ L2(Ω,G,P;Rn), with Pξm = πm and Pξ = π, such that ξm converges pointwise

P-a.s. to ξ. It remains to prove the convergence in L2(Ω,G,P;Rn). To this end, we notice that

(A.1) implies E[|ξm|2] → E[|ξ|2]. Therefore, by Theorem II.6.5 in [25], the sequence (|ξm|2)m is

uniformly integrable. Then, it follows that ξm → ξ in L2(Ω,G,P;Rn). 2

Lemma A.2 There exists a countable convergence determining class (ϕk)k≥1 ⊂ C2(R
n) for the

W2-convergence. In other words, given π1, π2, . . . , π ∈ P2(R
n), we have:

W2(πm, π)
m→∞−→ 0 if and only if

∫

Rn

ϕk(x)πm(dx)
m→∞−→

∫

Rn

ϕk(x)π(dx), for all k.

Proof. Let π1, π2, . . . , π ∈ P2(R
n). We recall from Theorem 6.9 and point (i) of Definition 6.8

in [28] that

W2(πm, π)
m→∞−→ 0 if and only if πm

m→∞−→
weakly

π and

∫

Rn

|x|2 πm(dx)
m→∞−→

∫

Rn

|x|2 π(dx).

Now, it is well-known that there exists a countable convergence determining class (ψh)h≥1 ⊂
Cb(R

n) (the set of real-valued continuous and bounded functions) for the weak convergence (see,

for instance, Theorem 2.18 in [3]). In other words, we have

πm
m→∞−→
weakly

π if and only if

∫

Rn

ψh(x)πm(dx)
m→∞−→

∫

Rn

ψh(x)π(dx), for all h.

Then, the claim follows taking ϕ1(x) := |x|2, for every x ∈ Rn, and ϕk := ψk−1, for every k ≥ 2.

2

Lemma A.3 Let (Ω̃, F̃ , P̃) be a probability space and let Π: Ω̃ → P2(R
n) be a measurable map.

Suppose that (Ẽ denotes the P̃-expected value)

Ẽ
[

‖Π‖22
]

< +∞. (A.2)

Then, there exists a sequence (Πm)m≥1 of measurable maps Πm : Ω̃ → P2(R
n) such that:

W2(Πm(ω̃),Π(ω̃))
m→∞−→ 0, P̃(dω̃)-a.s., and Ẽ

[

W2(Πm,Π)
2
] m→∞−→ 0,

29



where, for every m ≥ 1,

Πm(ω̃) =

Km
∑

k=1

πm,k 1Em,k
(ω̃), for every ω̃ ∈ Ω̃,

for some finite integer Km ≥ 1, πm,k ∈ P2(R
n), Em,k ∈ F̃ , with (Em,k)k=1,...,Km

being a

partition of Ω̃.

Proof. Recall from Theorem 6.18 in [28] that (P2(R
n),W2) is a complete separable metric

space. Then, there exists a sequence (πh)h≥1 dense in P2(R
n). Now, for every ℓ, h ≥ 1, define

the measurable set B̄ℓ,h ∈ F̃ by

B̄ℓ,h :=
{

ω̃ ∈ Ω̃ : W2(Π(ω̃), πh) ≤ 1/ℓ
}

.

We also define the disjoint measurable sets: Bℓ,1 := B̄ℓ,1 and Bℓ,h := B̄ℓ,h\(B̄ℓ,1 ∪ · · · ∪ B̄ℓ,h−1),

for any h ≥ 2. Notice that Ω̃ = ∪h≥1Bℓ,h. In particular, for every ℓ ≥ 1, there exists Kℓ ≥ 1

such that P̃(∪h≥Kℓ+1Bℓ,h) ≤ 1/ℓ2. Finally, we set

Π̄ℓ(ω̃) :=

Kℓ
∑

h=1

πh 1Bℓ,h∩Aℓ
(ω̃) + δ0

(

1(∪h≥Kℓ+1Bℓ,h)∩Aℓ
(ω̃) + 1Ac

ℓ
(ω̃)

)

, for every ω̃ ∈ Ω̃,

where

Aℓ :=
{

ω̃ ∈ Ω̃ : ‖Π(ω̃)‖22 ≤ ℓ
}

.

Then, we see that (recall from (2.2) that W2(δ0,Π(ω̃)) = ‖Π(ω̃)‖2)

W2(Π̄ℓ(ω̃),Π(ω̃)) ≤ 1

ℓ
1
(∪Kℓ

h=1Bℓ,h)∩Aℓ
(ω̃) + ‖Π(ω̃)‖2

(

1(∪h≥Kℓ+1Bℓ,h)∩Aℓ
(ω̃) + 1Ac

ℓ
(ω̃)

)

,

for all ω̃ ∈ Ω̃. Therefore (recalling that P̃(∪h≥Kℓ+1Bℓ,h) ≤ 1/ℓ2)

Ẽ[W2(Π̄ℓ,Π)
2] ≤ 1

ℓ2
+ Ẽ

[

‖Π(ω̃)‖22 1(∪h≥Kℓ+1Bℓ,h)∩Aℓ

]

+ Ẽ
[

‖Π(ω̃)‖22 1Ac
ℓ

]

≤ 1

ℓ2
+ ℓ P̃

(

(∪h≥Kℓ+1Bℓ,h) ∩Aℓ

)

+ Ẽ
[

‖Π(ω̃)‖22 1Ac
ℓ

]

≤ 1

ℓ2
+ ℓ

1

ℓ2
+ Ẽ

[

‖Π(ω̃)‖22 1Ac
ℓ

] ℓ→∞−→ 0,

where the convergence Ẽ
[

‖Π(ω̃)‖22 1Ac
ℓ

]

→ 0 follows from the Lebesgue dominated convergence

theorem, using (A.2) and noting that 1Ac
ℓ
converges pointwise P̃-a.s. to zero.

Let Yℓ : Ω̃ → [0,∞) be the nonnegative random variable given by Yℓ := W2(Π̄ℓ,Π). We know

that Yℓ → 0, as ℓ→ ∞, in L2(Ω̃, F̃ , P̃). Then, it is well-known that this implies the existence of

a subsequence (Yℓm)m≥1 such that Yℓm = W2(Π̄ℓm ,Π) → 0, as m → ∞, pointwise P̃-a.s. and in

L2(Ω̃, F̃ , P̃). Then, (Πm)m≥1, with Πm := Π̄ℓm , is the desired sequence. 2

B Proofs of Lemma 3.1 and Lemma 3.2

Proof of Lemma 3.1. Recall that, by construction, the map X̄t,ξ̄ : ([t, T ]×Ω×Ω1,B([t, T ])⊗
F̄) → (Rn,B(Rn)) is measurable. Therefore, up to indistinguishability, we can suppose that

X̄t,ξ̄ : ([t, T ]×Ω×Ω1,B([t, T ])⊗F ⊗F1) → (Rn,B(Rn)) is measurable. Since (X̄t,ξ̄
s )s∈[t,T ] is also
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(F̄B,µ
s ∨Ḡ)s-adapted, we deduce that, for every s ∈ [t, T ], the map X̄t,ξ̄

s : (Ω×Ω1, (G∨FB
s )⊗Fµ

s ) →
(Rn,B(Rn)) is measurable. Therefore, by estimate (3.6) and Fubini’s theorem, we see that, for

every ϕ ∈ B2(R
n), the map

ω1 7−→ E
[

ϕ
(

X̄t,ξ̄
s (·, ω1)

)]

,

from Ω1 into R, is Fµ
s -measurable. In particular, when ϕ ∈ C2(R

N ), the continuous process

(E[ϕ(X̄t,ξ̄
s )])s∈[t,T ] is F

µ-predictable. Then, by Remark 2.1 it follows that the process (P̂t,π
s )s∈[t,T ]

is Fµ-predictable.

Finally, we observe that

P̂t,π
s (ω1)[ϕ] = E

[

ϕ
(

X̄t,ξ̄
s (·, ω1)

)]

= Ē
[

ϕ
(

X̄t,ξ̄
s

)
∣

∣F̄µ
s

]

(ω1) = P
F̄µ

s

X̄t,ξ̄
s

(ω1)[ϕ],

P1(dω1)-a.s., for every ϕ ∈ B2(R
n). Let (ϕk)k ⊂ B2(R

n) be a countable separating class of

continuous functions, whose existence is guaranteed for instance by Theorem 2.18 in [3] (ϕk can

be taken even bounded). Then, there exists a unique P1-null set N1 ∈ F1 such that

P̂t,π
s (ω1)[ϕk] = P

F̄µ
s

X̄t,ξ̄
s

(ω1)[ϕk], for every k,

whenever ω1 /∈ N1. Since (ϕk)k is separating, we conclude that P̂
t,π
s coincides with P

F̄µ
s

X̄1,t,ξ̄
s

on

Ω1\N1. In other words, (P̂t,π
s )s∈[t,T ] is a version of (P

F̄µ
s

X̄t,ξ̄
s

)s∈[t,T ]. 2

Proof of Lemma 3.2. Fix t ∈ [0, T ] and consider a generic π ∈ P2(R
n). Let ξ̄ ∈ L2(Ω̄, Ḡ, P̄;Rn)

be such that π = Pξ̄ under P̄. We construct X̄t,ξ̄ using Picard’s iterations. More precisely, we

define recursively a sequence of Rn-valued processes (X̄m,t,ξ̄)m on Ω̄× [t, T ] as follows.

Recursive construction of the sequence (X̄m,t,ξ̄)m. Definition of X̄0,t,ξ̄. We set X̄0,t,ξ̄ ≡ 0.

Defining P̂0,t,ξ̄ by formula (3.7) with X̄0,t,ξ̄ in place of X̄t,ξ̄, we see that P̂
0,t,π
s ≡ δ0, the Dirac

delta at zero, for all s ∈ [t, T ]. In other words, up to a version, (P
F̄µ

s

X̄0,t,ξ̄
s

)s∈[t,T ] is identically equal

to δ0.

Definition of X̄1,t,ξ̄. The process X̄1,t,ξ̄ is given by:

X̄1,t,ξ̄
s = ξ̄ +

∫ s

t
b
(

r, 0, δ0, Īr
)

dr +

∫ s

t
σ
(

r, 0, δ0, Īr
)

dB̄r,

for all s ∈ [t, T ]. Notice that, by construction, the map X̄1,t,ξ̄ : ([t, T ]×Ω×Ω1,B([t, T ])⊗ F̄) →
(Rn,B(Rn)) is measurable. Up to indistinguishability, we can suppose that X̄1,t,ξ̄ : ([t, T ]×Ω×
Ω1,B([t, T ])⊗F⊗F1) → (Rn,B(Rn)) is measurable. As a consequence, by Fubini’s theorem, we

can define the P2(R
n)-valued Fµ-predictable stochastic process (P̂1,t,π

s )s∈[t,T ] by formula (3.7)

with X̄1,t,ξ̄ in place of X̄t,ξ̄. Notice that (P̂1,t,π
s )s∈[t,T ] is a version of (P

F̄µ
s

X̄1,t,ξ̄
s

)s∈[t,T ]. Moreover,

from (3.7), we see that (using the definition of X̄1,t,ξ̄
s , and the independence of Ḡ and F̄B

∞)

P̂1,t,π
s (ω1)[ϕ] = E

[

ϕ
(

X̄1,t,ξ̄
s (·, ω1)

)]

=

∫

Rn

Φ1,ϕ(ω
1, s, x)π(dx),

for every ω1 ∈ Ω1 and ϕ ∈ B2(R
n), where Φ1,ϕ : Ω

1 × [t, T ] × Rn → R is measurable, with at

most quadratic growth in x uniformly with respect to (ω1, s), and it is given by

Φ1,ϕ(ω
1, s, x) := E

[

ϕ

(

x+

∫ s

t
b
(

r, 0, δ0, Īr(·, ω1)
)

dr +

∫ s

t
σ
(

r, 0, δ0, Īr(·, ω1)
)

dBr

)]

.
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Then, we see that the map P̂
1,t,·
· [ϕ] : Ω1 × [t, T ] × P2(R

n) → R is measurable. Indeed, when

Φ1,ϕ(ω
1, s, x) = ℓ(ω1, s)h(x), for some measurable functions ℓ and h, with ℓ bounded and h

with at most quadratic growth (namely h ∈ B2(R
n)), the result follows from Remark 2.1. The

general case can be proved by a monotone class argument.

Using again Remark 2.1, we conclude that the map P̂
1,t,·
· : Ω1 × [t, T ] × P2(R

n) → P2(R
n)

is measurable.

Definition of X̄m+1,t,ξ̄, for every integer m ≥ 1. We define X̄m+1,t,ξ̄ recursively, assuming

that X̄m,t,ξ̄ has already been defined. We also assume that the map X̄m,t,ξ̄ : ([t, T ] × Ω ×
Ω1,B([t, T ]) ⊗ F ⊗ F1) → (Rn,B(Rn)) is measurable and that (P̂m,t,π

s )s∈[t,T ] is the P2(R
n)-

valued Fµ-predictable stochastic process given by formula (3.7) with X̄m,t,ξ̄ in place of X̄t,ξ̄.

Moreover, we suppose that the map P̂
m,t,·
· : Ω1 × [t, T ] × P2(R

n) → P2(R
n) is measurable.

Notice that (P̂m,t,π
s )s∈[t,T ] is a version of (P

F̄µ
s

X̄m,t,ξ̄
s

)s∈[t,T ].

Then, we define X̄m+1,t,ξ̄ as follows:

X̄m+1,t,ξ̄
s = ξ̄ +

∫ s

t
b
(

r, X̄m,t,ξ̄
r , P̂m,t,π

r , Īr
)

dr +

∫ s

t
σ
(

r, X̄m,t,ξ̄
r , P̂m,t,π

r , Īr
)

dB̄r,

for all s ∈ [t, T ]. Notice that, by construction, the map X̄m+1,t,ξ̄ : ([t, T ] × Ω × Ω1,B([t, T ]) ⊗
F̄) → (Rn,B(Rn)) is measurable. Therefore, up to indistinguishability, we can suppose that

X̄m+1,t,ξ̄ : ([t, T ]× Ω× Ω1,B([t, T ])⊗F ⊗ F1) → (Rn,B(Rn)) is measurable. Then, by Fubini’s

theorem, we can define the P2(R
n)-valued Fµ-predictable stochastic process (P̂m+1,t,π

s )s∈[t,T ] by

formula (3.7) with X̄m+1,t,ξ̄ in place of X̄t,ξ̄, namely

P̂m+1,t,π
s (ω1)[ϕ] = E

[

ϕ
(

X̄m+1,t,ξ̄
s (·, ω1)

)]

,

for every ω1 ∈ Ω1, ϕ ∈ B2(R
n), s ∈ [t, T ]. In particular, we have

P̂m+1,t,π
s (ω1)[ϕ] = E

[

ϕ

(

ξ̄ +

∫ s

t
b
(

r, ξ̄ + · · · , P̂m,t,π
r (ω1), Īr(·, ω1)

)

dr

+

∫ s

t
σ
(

r, ξ̄ + · · · , P̂m,t,π
r (ω1), Īr(·, ω1)

)

dB̄r

)]

=

∫

Rn

Φm+1,ϕ(ω
1, s, x, π)π(dx),

for some measurable Φm+1,ϕ : Ω
1 × [t, T ] × Rn × P2(R

n) → R, with at most quadratic growth

in (x, π) uniformly with respect to (ω1, s) (the dependence of Φm+1,ϕ on π is due to the pres-

ence of P̂m,t,π
r ). Then, we see that the map P̂

m+1,t,·
· [ϕ] : Ω1 × [t, T ] × P2(R

n) → R is measur-

able, as it can be deduced using a monotone class argument, first taking Φm+1,ϕ of the form

Φm+1,ϕ(ω
1, s, x, π) = ℓ(ω1, s, π)h(x), for some h ∈ B2(R

n), and some measurable function ℓ with

at most quadratic growth in π uniformly with respect to (ω1, s). Then, by Remark 2.1, we see

that the map P̂
m+1,t,·
· : Ω1 × [t, T ]× P2(R

n) → P2(R
n) is measurable.

End of the proof of Lemma 3.2. Now that we have constructed the sequence (X̄m,t,ξ̄)m,

we notice that it can be proved (proceeding for instance along the same lines as in the proof of

Theorem IX.2.1 in [24]) that

sup
s∈[t,T ]

∣

∣X̄m,t,ξ̄
s − X̄t,ξ̄

s

∣

∣

P̄−→
m→∞

0, (B.1)
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where the convergence holds in probability. Fix s ∈ [t, T ] and let us prove that (B.1) implies

the following convergence in probability:

W2

(

P̂m,t,π
s , P̂t,π

s

) P1

−→
m→∞

0. (B.2)

In order to prove (B.2), it is enough to show that every subsequence (P̂mℓ,t,π
s )ℓ admits a subsub-

sequence (P̂
mℓh

,t,π
s )h for which (B.2) holds. Let us fix a subsequence (P̂mℓ,t,π

s )ℓ. We begin noting

that, by (B.1), we have, for every ϕ ∈ C2(R
n),

P̂mℓ,t,π
s [ϕ]

P1

−→
ℓ→∞

P̂t,π
s [ϕ].

Let (ϕk)k ⊂ C2(R
n) be a countable convergence determining class for the W2-convergence,

whose existence follows from Lemma A.2. Then, there exists a unique P1-null set N1 ∈ F1 and

a subsubsequence (P̂
mℓh

,t,π
s )h such that, for all ω1 ∈ Ω1\N1,

P̂
mℓh

,t,π
s (ω1)[ϕk]

h→∞−→ P̂t,π
s (ω1)[ϕk], for every k.

By Theorem 6.9 in [28] it follows that, for all ω1 ∈ Ω1\N1,

W2

(

P̂
mℓh

,t,π
s (ω1), P̂m,t,π

s (ω1)
) h→∞−→ 0.

In particular, the above convergence holds in probability. This concludes the proof of (B.2).

Notice that convergence (B.2) holds for every s ∈ [t, T ] and π ∈ P2(R
n). Moreover, for every

m ∈ N, P̂m,t,·
· is jointly measurable with respect to (ω1, s, π). Then, we deduce (proceeding for

instance as in the first item of Exercise IV.5.17 in [24] or as in Proposition 1 of [26]) that there

exists a measurable map P
t,·
· : Ω1 × [t, T ]× P2(R

n) → P2(R
n) such that

W2

(

P̂m,t,π
s ,Pt,π

s

) P1

−→
m→∞

0,

for every s ∈ [t, T ] and π ∈ P2(R
n). This implies that P

t,π
s coincides P1-a.s. with P̂

t,π
s . By

Lemma 3.1 we conclude that (Pt,π
s )s∈[t,T ] is a version of (P

F̄µ
s

X̄t,ξ̄
s

)s∈[t,T ]. 2

C Stability lemma

For the proof of Theorem 3.1, we need the following stability result.

Lemma C.1 Suppose that Assumption (A1) holds.

• Let (Ω̃, F̃ ,Q) be a probability space, on which a d-dimensional Brownian motion B̃ =

(B̃t)t≥0 is defined.

• For every ℓ ∈ N, let F̃ℓ = (F̃ℓ
s)s≥0 be a filtration on (Ω̃, F̃ ,Q) such that B̃ is a Brownian

motion with respect to F̃ℓ.

• For every ℓ ∈ N, let F̃µℓ = (F̃µℓ
s )s≥0, with F̃µℓ

s ⊂ F̃ℓ
s , be a filtration on (Ω̃, F̃ ,Q) indepen-

dent of B̃.

• Let (t, x, ξ̃) ∈ [0, T ]×Rn ×L2(Ω̃, F̃ ,Q;Rn), where ξ̃ is F̃ℓ
t -measurable for every ℓ ∈ N and

π = Pξ̃ under Q.

33



For every ℓ ∈ N, consider the system of equations:

dX̃t,ξ̃,ℓ
s = b

(

s, X̃t,ξ̃,ℓ
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

ds+ σ
(

s, X̃t,ξ̃,ℓ
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

dB̃s, X̃t,ξ̃,ℓ
t = ξ̃,

dX̃t,x,π,ℓ
s = b

(

s, X̃t,x,π,ℓ
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

ds+ σ
(

s, X̃t,x,π,ℓ
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

dB̃s, X̃t,x,π,ℓ
t = x,

for all s ∈ [t, T ], where (Ĩℓs)s∈[t,T ] is an A-valued F̃ℓ-progressive process. Then

EQ

[
∫ T

t
f
(

s, X̃t,x,π,ℓ
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

ds+ g
(

X̃t,x,π,ℓ
T ,P

F̃
µℓ
T

X̃
t,ξ̃,ℓ
T

)

]

ℓ→∞−→ EQ

[
∫ T

t
f
(

s, X̃t,x,π,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)

ds + g
(

X̃t,x,π,0
T ,P

F̃
µ0
T

X̃
t,ξ̃,0
T

)

]

.

whenever ρ̃Q(Ĩℓ, Ĩ0) := EQ[
∫ T
0 ρ(Ĩℓs, Ĩ

0
s ) ds] → 0 as ℓ → ∞.

Proof. We begin noting that, by standard arguments (based on the Burkholder-Davis-Gundy

and Gronwall inequalities), we have

sup
ℓ∈N

EQ
[

sup
s∈[t,T ]

(
∣

∣X̃t,ξ̃,ℓ
s

∣

∣

2
+

∣

∣X̃t,x,π,ℓ
s

∣

∣

q)
]

< ∞, (C.1)

for all q ≥ 1. We also have

EQ
[

sup
s∈[t,T ]

∣

∣X̃t,ξ̃,ℓ
s − X̃t,ξ̃,0

s

∣

∣

2
]

≤ C EQ

[
∫ T

t

(
∣

∣b
(

s, X̃t,ξ̃,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩℓs
)

− b
(

s, X̃t,ξ̃,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)
∣

∣

2

+
∣

∣σ
(

s, X̃t,ξ̃,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩℓs
)

− σ
(

s, X̃t,ξ̃,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)
∣

∣

2)
ds

]

, (C.2)

for some positive constant C, independent of ℓ. Now, we notice that ρ̃Q(Ĩℓ, Ĩ0) → 0 implies

Ĩℓ → Ĩ0 in dQ ds-measure, which in turn implies the convergence to zero in dQ ds-measure of

the integrand in the right-hand side of (C.2). By uniform integrability (which follows from (C.1)

and Assumption (A1)(ii)), we deduce

W2

(

P
F̃

µℓ
s

X̃t,ξ̃,ℓ
s

,PF̃
µ0
s

X̃t,ξ̃,0
s

)2 ≤ EQ
[

∣

∣X̃t,ξ̃,ℓ
s − X̃t,ξ̃,0

s

∣

∣

2
∣

∣

∣

∨

ℓ∈N
F̃µℓ∞

]

ℓ→∞−→ 0,

Q-a.s., for all s ∈ [t, T ]. Moreover

sup
s∈[t,T ]

W2

(

P
F̃

µℓ
s

X̃t,ξ̃,ℓ
s

,PF̃
µ0
s

X̃t,ξ̃,0
s

)2 ≤ EQ
[

sup
s∈[t,T ]

∣

∣X̃t,ξ̃,ℓ
s − X̃t,ξ̃,0

s

∣

∣

2
∣

∣

∣

∨

ℓ∈N
F̃µℓ∞

]

ℓ→∞−→ 0. (C.3)

Similarly, we have

EQ
[

sup
s∈[t,T ]

∣

∣X̃t,x,π,ℓ
s − X̃t,x,π,0

s

∣

∣

2
]

≤ C EQ

[
∫ T

t

(∣

∣b
(

s, X̃t,x,π,0
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

− |b
(

s, X̃t,x,π,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)
∣

∣

2
+

∣

∣σ
(

s, X̃t,x,π,0
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

− σ
(

s, X̃t,x,π,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)
∣

∣

2)
ds

]

.

Then, by (C.3), the convergence Ĩℓ → Ĩ0 in dQ ds-measure, estimate (C.1), and Assumption

(A1)(ii), we obtain

EQ
[

sup
s∈[t,T ]

∣

∣X̃t,x,π,ℓ
s − X̃t,x,π,0

s

∣

∣

2
]

ℓ→∞−→ 0. (C.4)
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Then, by (C.3) and (C.4), we see that f(s, X̃t,x,π,ℓ
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs) → f(s, X̃t,x,π,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩ0s ) as ℓ →
∞ in dQ ds-measure. Therefore, by uniform integrability (which follows from estimate (C.1)

and Assumption (A1)(ii)), we deduce

EQ

[
∫ T

t
f
(

s, X̃t,x,π,ℓ
s ,PF̃

µℓ
s

X̃t,ξ̃,ℓ
s

, Ĩℓs
)

ds

]

ℓ→∞−→ EQ

[
∫ T

t
f
(

s, X̃t,x,π,0
s ,PF̃

µ0
s

X̃t,ξ̃,0
s

, Ĩ0s
)

ds

]

.

Using again (C.3) and (C.4), we obtain the Q-a.s. pointwise convergence g(X̃t,x,π,ℓ
T ,P

F̃
µℓ
T

X̃
t,ξ̃,ℓ
T

) →

g(X̃t,x,π,0
T ,P

F̃
µ0
T

X̃
t,ξ̃,0
T

) as ℓ → ∞. By estimate (2.6) together with the polynomial growth condition of

g in Assumption (A1)(ii), we can apply Lebesgue’s dominated convergence theorem and obtain

EQ
[

g
(

X̃t,x,π,ℓ
T ,P

F̃
µℓ
T

X̃
t,ξ̃,ℓ
T

)

]

ℓ→∞−→ EQ
[

g
(

X̃t,x,π,0
T ,PF̃

µ0
s

X̃t,ξ̃,0
s

)

]

,

which concludes the proof. 2

D On a different randomization of the control

In the present appendix we introduce, following [19], a different kind of randomization, which in

our paper turns out to be useful in the proof of Theorem 4.1. More precisely, for every t ∈ [0, T ],

a0 ∈ A, consider the A-valued piecewise constant process Īt,a0 = (Īt,a0s )s≥t on (Ω̄, F̄ , P̄) given

by:

Īt,a0s (ω, ω1) =
∑

n≥0
t<Tn+1(ω1)

(

a01{Tn(ω1)<t} + (An(ω
1))s∧T (ω)1{t≤Tn(ω1)}

)

1[Tn(ω1),Tn+1(ω1))(s), (D.1)

for all s ≥ t, where we recall that T0 = 0 and A0 = ᾱ. The process Ī = (Īs)s≥0 defined in (3.3)

corresponds to Ī0,a0 = (Ī0,a0s )s≥0, for any a0 ∈ A (when t = 0, a0 plays no role in (D.1)).

Let F̄B,t = (F̄B,t
s )s≥t (resp. F̄

µ,t = (F̄µ,t
s )s≥t) be the P-completion of the filtration generated

by (B̄s − B̄t)s≥t (resp. µ̄ 1(t,∞)×A), and let F̄B,µ,t = (F̄B,µ,t
s )s≥t denote the P-completion of the

filtration generated by (B̄s − B̄t)s≥t and µ̄ 1(t,∞)×A. If we randomize the control in (2.3)-(2.4)

by means of the process Īt,a0 , we obtain, for every (x, ξ̄) ∈ Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ

under P̄:

dX̄t,ξ̄,a0
s = b

(

s, X̄t,ξ̄,a0
s ,P

F̄µ,t
s

X̄
t,ξ̄,a0
s

, Īt,a0s

)

ds+ σ
(

s, X̄t,ξ̄,a0
s ,P

F̄µ,t
s

X̄
t,ξ̄,a0
s

, Īt,a0s

)

dB̄s, (D.2)

dX̄t,x,π,a0
s = b

(

s, X̄t,x,π,a0
s ,P

F̄µ,t
s

X̄
t,ξ̄,a0
s

, Īt,a0s

)

ds + σ
(

s, X̄t,x,π,a0
s ,P

F̄µ,t
s

X̄
t,ξ̄,a0
s

, Īt,a0s

)

dB̄s, (D.3)

for all s ∈ [t, T ], with X̄t,ξ̄,a0
t = ξ̄ and X̄t,x,π,a0

t = x. Under Assumption (A1), there exists

a unique (up to indistinguishability) pair (X̄t,ξ̄,a0
s , X̄t,x,π,a0

s )s∈[t,T ] of continuous (F̄B,µ,t
s ∨ Ḡ)s-

adapted processes solution to equations (D.2)-(D.3), satisfying

Ē

[

sup
s∈[t,T ]

(
∣

∣X̄t,ξ̄,a0
s

∣

∣

2
+

∣

∣X̄t,x,π,a0
s

∣

∣

q)
]

< ∞,

for all q ≥ 1.

Let Fµ,t = (Fµ,t
s )s≥t be the P1-completion of the filtration generated by µ 1(t,∞)×Astep

, and

denote by P(Fµ,t) the predictable σ-algebra on Ω1 × [t,∞) corresponding to Fµ,t. Then, we
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define Vt as the set of P(Fµ,t)⊗ B(A)-measurable maps ν : Ω1 × [t,∞)×A → (0,∞), with 0 <

infΩ1×[t,∞)×A ν ≤ supΩ1×[t,∞)×A ν < ∞. Given ν ∈ Vt, we define ν∗ ∈ V as ν∗ = 1Ω1×[0,t)×A +

ν 1Ω1×[t,∞)×A. We denote Pν (resp. P̄ν) the probability Pν∗ (resp. P̄ν̄∗), and Eν (resp. Ēν) the

expectation Eν∗ (resp. Ēν̄∗). Then, for every ν ∈ Vt, we define the gain functional (notice that

JR(t, x, π, a0, ν) does not depend on the value of ν∗ on Ω1 × [0, t)×A)

JR(t, x, π, a0, ν) = Ēν

[
∫ T

t
f
(

s, X̄t,x,π,a0
s ,P

F̄µ,t
s

X̄
t,ξ̄,a0
s

, Īt,a0s

)

ds+ g
(

X̄t,x,π,a0
T ,P

F̄
µ,t
T

X̄
t,ξ̄,a0
T

)

]

and the value function

V R(t, x, π, a0) = sup
ν∈Vt

JR(t, x, π, a0, ν).

Finally, let FB,t = (FB,t
s )s≥t be the P-completion of the filtration generated by (Bs−Bt)s≥t, and

let At denote the set of FB,t-progressive processes α : Ω × [t, T ] → A. Given α ∈ At, we define

α∗ ∈ A as α∗ = ā 1Ω×[0,t) + α 1Ω×[t,T ], for some deterministic and fixed point ā ∈ A. Then,

we denote J(t, x, π, α∗) simply by J(t, x, π, α) (notice that J(t, x, π, α∗) does not depend on the

value of α∗ on Ω× [0, t), namely on ā).

Theorem D.1 Under Assumption (A1), we have the following identities:

V (t, x, π) := sup
α∈A

J(t, x, π, α) = sup
α∈At

J(t, x, π, α) = sup
ν∈Vt

JR(t, x, π, a0, ν) =: V R(t, x, π, a0)

= sup
ν∈V

JR(t, x, π, ν) =: V R(t, x, π), (D.4)

for all (t, x, π, a0) ∈ [0, T ]× Rn × P2(R
n)×A.

Remark D.1 From Theorem 3.1 we conclude that the function V R(t, x, π, a0) does not depend
on a0 ∈ A and coincides with the function V R(t, x, π) defined in (3.8). 2

Proof. When t = 0, we see that, for every a0 ∈ A, we have Ī0,a0 = Ī, A0 = A, and V0 = V.
Therefore, V R(0, x, π, a0) coincides with V R(0, x, π), so the result follows from Theorem 3.1.

When t > 0, we proceed along the same lines as in the proof of Theorem 3.1 for the case t = 0,

with (B̄s)s≥0, F̄
B = (F̄B

s )s≥0, A, µ̄, F̄B,µ = (F̄B,µ
s )s≥0, V replaced respectively by (B̄s − B̄t)s≥t,

F̄B,t = (F̄B,t
s )s≥t, At, µ̄ 1(t,∞)×A, F̄

B,µ,t = (F̄B,µ,t
s )s≥t, Vt. Then, we obtain

sup
α∈At

J(t, x, π, α) = sup
ν∈Vt

JR(t, x, π, a0, ν).

This implies that V R(t, x, π, a0) does not depend on a0 ∈ A, since the left-hand side of the above

inequality does not depend on it.

By Theorem 3.1, equivalence (D.4) follows if we prove the following inequalities

V (t, x, π) ≥ sup
α∈At

J(t, x, π, α), sup
ν∈Vt

JR(t, x, π, a0, ν) ≥ V R(t, x, π). (D.5)

Since for every α ∈ At we have, by definition, J(t, x, π, α) = J(t, x, π, α∗), where α∗ = ā 1Ω×[0,t)+

α 1Ω×[t,T ], we see that supα∈At
J(t, x, π, α) ≤ supα∈A J(t, x, π, α) = V (t, x, π). Therefore, the

first inequality in (D.5) is proved.
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In order to establish the second inequality in (D.5), we fix (t, x, ξ̄, π) ∈ [0, T ] × Rn ×
L2(Ω̄, Ḡ, P̄;Rn) × P2(R

n), with π = Pξ under P, and we take a particular probabilistic set-

ting for the randomized McKean-Vlasov control problem. More precisely, we first consider an-

other probabilistic framework for randomized problem, where the objects (Ω,F ,P), (Ω1,F1,P1),

(Ω̄, F̄ , P̄), B̄, µ̄, (Tn,An), Ī are replaced respectively by (Ω0,F0,P0), (Ω̌1, F̌1, P̌1), (Ω̌, F̌ , P̌), B̌,

µ̌, (Ťn, Ǎn), Ǐ.

Let Ω̂ = Ω̌× Ω̄, F̂ the P̌⊗ P̄-completion of F̌ ⊗ F̄ , P̂ the extension of P̌⊗ P̄ to F̂ , and Ê the

P̂-expected value. Let also Ĝ be the canonical extension of Ḡ to Ω̂. Define ξ̂(ω̌, ω̄) := ξ̄(ω̄) and

B̂s(ω̌, ω̄) := B̌s(ω̌) 1{s≤t} + (B̄s(ω̄)− B̄t(ω̄) + B̌t(ω̌)) 1{s>t},

µ̂(ω̌, ω̄; ds dα) := µ̌(ω̌; ds dα) 1{s≤t} + µ̄(ω̄; ds dα) 1{s>t}.

Notice that π = Pξ̂ under P̂, B̂ = (B̂s)s≥0 is a Brownian motion on (Ω̂, F̂ , P̂), and µ̂ is a Poisson

random measure with compensator λ(dα) ds under P̂, with respect to its natural filtration. We

also define as in (3.3) the A-valued piecewise constant process Î = (Îs)s≥0 associated to µ̂, which

in the present case takes the following form:

Îs(ω̌, ω̄) = Ǐs(ω̌) 1{s≤t}

+
∑

n≥0
t<Tn+1(ω1)

(

Ǐs(ω̌)1{Tn(ω1)<t} + (An(ω
1))s∧T (ω)1{t≤Tn(ω1)}

)

1[Tn(ω1),Tn+1(ω1))(s) 1{s>t}.

In particular, Ît = Ǐt. We define F̂B,µ = (F̂B,µ
s )s≥0 (resp. F̂µ = (F̂µ

s )s≥0) as the P̂-completion

of the filtration generated by B̂ and µ̂ (resp. µ̂). We denote (X̂t,ξ̂
s , X̂t,x,π

s )s∈[t,T ] the unique

(up to indistinguishability) continuous (F̂B,µ
s ∨ Ĝ)s-adapted solution to equations (3.4)-(3.5) on

(Ω̂, F̂ , P̂) with ξ̄, B̄, Ī, F̄µ
· replaced respectively by ξ̂, B̂, Î, F̂µ

· . For later use, we also consider,

for every ω̌ ∈ Ω̌, the unique (up to indistinguishability) continuous (F̄B,µ,t
s ∨Ḡ)s-adapted solution

(X̄
t,ξ̄,Ǐt(ω̌)
s , X̄

t,x,π,Ǐt(ω̌)
s )s∈[t,T ] to equations (D.2)-(D.3) with a0 replaced by Ǐt(ω̌). Then, we see

that, for P̌-a.e. ω̌ ∈ Ω̌, (X̂t,ξ̂
s (ω̌, ·), X̂t,x,π

s (ω̌, ·))s∈[t,T ] and (X̄
t,ξ̄,Ǐt(ω̌)
s , X̄

t,x,π,Ǐt(ω̌)
s )s∈[t,T ] solve the

same system of equations. Therefore, by pathwise uniqueness, for P̌-a.e. ω̌ ∈ Ω̌, we have

X̂t,ξ̂
s (ω̌, ω̄) = X̄

t,ξ̄,Ǐt(ω̌)
s (ω̄) and X̂t,x,π

s (ω̌, ω̄) = X̄
t,x,π,Ǐt(ω̌)
s (ω̄), for all s ∈ [t, T ], P̄(dω̄)-almost

surely.

Let P(F̂µ) be the predictable σ-algebra on Ω̂×R+ corresponding to F̂µ. In order to define the

randomized McKean-Vlasov control problem on (Ω̂, F̂ , P̂), we introduce the set V̂ of all P(F̂µ)⊗
B(A)-measurable maps ν̂ : Ω̂×R+ ×A → (0,∞), satisfying 0 < infΩ̂×R+×A ν̂ ≤ supΩ̂×R+×A ν̂ <

∞. Then, we define in an obvious way κν̂ , P̂ν̂ , Êν̂ , ĴR(t, x, π, ν̂), and the corresponding value

function V̂ R(t, x, π). We recall from step I of the proof of Theorem 3.1 that V̂ R(t, x, π) =

V R(t, x, π).
We can now prove the second inequality in (D.5), namely

V R(t, x, π) = V̂ R(t, x, π) := sup
ν̂∈V̂

ĴR(t, x, π, ν̂) ≤ sup
ν∈Vt

JR(t, x, π, a0, ν). (D.6)

Fix ν̂ ∈ V̂. We begin noting that, since ν̂ is P(F̂µ) ⊗ B(A)-measurable, up to a P̂-null set, ν̂

depends only (ω̌1, ω1). Now, by a monotone class argument, we see that there exists a P̌1-null

set Ň1 ∈ F̌1 such that νω̌
1
= νω̌

1

s (ω1, α) : Ω1 × [t,∞)×A → (0,∞), given by

νω̌
1

s (ω1, α) := ν̂s(ω̌
1, ω1, α), for all (ω̌1, ω1, s, α) ∈ Ω̌1 × Ω1 × [t,∞)×A,
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is an element of Vt, for every ω̌
1 /∈ Ň1. In other words, for every ω̌1 /∈ Ň1, νω̌

1
is a P(Fµ,t)⊗B(A)-

measurable map satisfying 0 < infΩ1×[t,∞)×A ν
ω̌1 ≤ supΩ1×[t,∞)×A ν

ω̌1
< ∞. Therefore, by

Fubini’s theorem,

ĴR(t, x, π, ν̂) = Ê

[

κν̂T

(
∫ T

t
f
(

s, X̂t,x,π
s ,P

F̂µ
s

X̂t,ξ̂
s

, Îs
)

ds+ g
(

X̂t,x,π
T ,P

F̂
µ
T

X̂
t,ξ̂
T

)

)]

=

∫

Ω̌
Ē

[

κν
ω̌1

T

(
∫ T

t
f
(

s, X̄t,x,π,Ǐt(ω̌)
s ,P

F̄µ
s

X̄
t,ξ̄,Ǐt(ω̌)
s

, Īt,Ǐt(ω̌)s

)

ds+ g
(

X̄
t,x,π,Ǐt(ω̌)
T ,P

F̄
µ
T

X̄
t,ξ̄,Ǐt(ω̌)
T

)

)]

P̌(dω̌)

=

∫

Ω̌
JR(t, x, π, Ǐt(ω̌), ν

ω̌1
) P̌(dω̌) ≤ sup

ν∈Vt

JR(t, x, π, a0, ν),

for any a0 ∈ A (recall that supν∈Vt
JR(t, x, π, a0, ν) does not depend on a0 ∈ A). From the

arbitrariness of ν̂ ∈ V̂, we deduce that supν̂∈V̂ Ĵ
R(t, x, π, ν̂) ≤ supν∈Vt

JR(t, x, π, a0, ν), hence
establishing (D.6), and consequently the second inequality in (D.5). 2

Corollary D.1 Under Assumption (A1), we have

V (t, x, π) = ess sup
ν∈V

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

∣

∣

∣

∣

Fµ
t

]

, (D.7)

P1-a.s., for all (t, x, ξ̄) ∈ [0, T ] × Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ̄ under P̄.

Proof. Fix (t, x, ξ̄) ∈ [0, T ]× Rn × L2(Ω̄, Ḡ, P̄;Rn), with π = Pξ under P̄. We have

E1

[

ess sup
ν∈V

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

∣

∣

∣

∣

Fµ
t

]]

≥ E1

[

ess sup
ν∈V1,t

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

∣

∣

∣

∣

Fµ
t

]]

≥ sup
ν∈V1,t

E1

[

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

∣

∣

∣

∣

Fµ
t

]]

.

By the Bayes formula, and recalling that κνt = 1 whenever ν ∈ V1,t, we obtain

sup
ν∈V1,t

E1

[

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds + E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

∣

∣

∣

∣

Fµ
t

]]

= sup
ν∈V1,t

E1

[

E1

[

κνT

(
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

)
∣

∣

∣

∣

Fµ
t

]]

= sup
ν∈V1,t

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

]

= V (t, x, π),

where the last equality follows from Remark 3.4. Then, we conclude that

E1

[

ess sup
ν∈V

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds+ E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

∣

∣

∣

∣

Fµ
t

]]

≥ V (t, x, π). (D.8)

Let us now prove the following inequality: for every ν ∈ V, P1-a.s.,

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds + E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

∣

∣

∣

∣

Fµ
t

]

≤ V (t, x, π). (D.9)
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Suppose we have already proved (D.9). Hence, P1-a.s.,

ess sup
ν∈V

Eν

[
∫ T

t
E
[

f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)]

ds + E
[

g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)]

∣

∣

∣

∣

Fµ
t

]

≤ V (t, x, π).

From the above inequality and (D.8), it is then easy to see that equality (D.7) holds. It remains

to prove (D.9). To this end, we notice that (D.9) holds if and only if the following inequality

holds: for every ν ∈ V, P̄-a.s.,

Ēν

[
∫ T

t
f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)

∣

∣

∣

∣

F̄µ
t

]

≤ V (t, x, π). (D.10)

Now, consider the same probabilistic setting introduced in the proof of Theorem D.1: (Ω̂, F̂ , P̂),
Ĝ, B̂, µ̂, F̂B,µ = (F̂B,µ

s )s≥0, F̂µ = (F̂µ
s )s≥0, Î, X̂

t,ξ̂, X̂t,x,π, V̂, V̂1,t, P̂ν̂ , Êν̂ , ĴR(t, x, π, ν̂),
V̂ R(t, x, π). Observe that (D.10) holds if and only if the following inequality holds: for every

ν̂ ∈ V̂, P̂-a.s.,

Êν̂

[
∫ T

t
f
(

s, X̂t,x,π
s ,P

F̂µ
s

X̂t,ξ̂
s

, Îs
)

ds+ g
(

X̂t,x,π
T ,P

F̂
µ
T

X̂
t,ξ̂
T

)

∣

∣

∣

∣

F̂µ
t

]

≤ V (t, x, π). (D.11)

Indeed, let us prove that if (D.11) holds then (D.10) holds as well (the other implication has a

similar proof). Fix ν ∈ V. Then, proceeding as in step I of the proof of Theorem 3.1, we see

that there exists ν̂ ∈ V̂ such that

κ̄νT
κ̄νt

(
∫ T

t
f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)

)

, B̄, µ̄

and
κν̂T
κν̂t

(
∫ T

t
f
(

s, X̂t,x,π
s ,P

F̂µ
s

X̂t,ξ̂
s

, Îs
)

ds+ g
(

X̂t,x,π
T ,P

F̂
µ
T

X̂
t,ξ̂
T

)

)

, B̂, µ̂

have the same joint law. As a consequence,

Ēν

[
∫ T

t
f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)

∣

∣

∣

∣

F̄µ
t

]

and

Êν̂

[
∫ T

t
f
(

s, X̂t,x,π
s ,P

F̂µ
s

X̂t,ξ̂
s

, Îs
)

ds+ g
(

X̂t,x,π
T ,P

F̂
µ
T

X̂
t,ξ̂
T

)

∣

∣

∣

∣

F̂µ
t

]

have the same law. In particular, we have

P̄

(

Ēν

[
∫ T

t
f
(

s, X̄t,x,π
s ,P

F̄µ
s

X̄t,ξ̄
s

, Īs
)

ds+ g
(

X̄t,x,π
T ,P

F̄
µ
T

X̄
t,ξ̄
T

)

∣

∣

∣

∣

F̄µ
t

]

≤ V (t, x, π)

)

= P̂

(

Êν̂

[
∫ T

t
f
(

s, X̂t,x,π
s ,P

F̂µ
s

X̂t,ξ̂
s

, Îs
)

ds+ g
(

X̂t,x,π
T ,P

F̂
µ
T

X̂
t,ξ̂
T

)

∣

∣

∣

∣

F̂µ
t

]

≤ V (t, x, π)

)

= 1,

where the last equality follows from the assumption that (D.11) holds. This implies that (D.10)

also holds for ν. Since ν was arbitrary, the claim follows.

Let us now prove that (D.11) holds. For every ν̂ ∈ V̂, by the Bayes formula, and proceeding

as in the proof of Theorem D.1, we find

Êν̂

[
∫ T

t
f
(

s, X̂t,x,π
s ,P

F̂µ
s

X̂t,ξ̂
s

, Îs
)

ds+ g
(

X̂t,x,π
T ,P

F̂
µ
T

X̂
t,ξ̂
T

)

∣

∣

∣

∣

F̂µ
t

]
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= Ê

[

κν̂T
κν̂t

(
∫ T

t
f
(

s, X̂t,x,π
s ,P

F̂µ
s

X̂t,ξ̂
s

, Îs
)

ds+ g
(

X̂t,x,π
T ,P

F̂
µ
T

X̂
t,ξ̂
T

)

)∣

∣

∣

∣

F̂µ
t

]

= Ê

[

κν
·

T

κν
·

t

(
∫ T

t
f
(

s, X̄t,x,π,Ǐt
s ,P

F̄µ
s

X̄
t,ξ̄,Ǐt
s

, Īt,Ǐts

)

ds+ g
(

X̄t,x,π,Ǐt
T ,P

F̄
µ
T

X̄
t,ξ̄,Ǐt
T

)

)
∣

∣

∣

∣

F̂µ
t

]

.

Then, by the freezing lemma (see for instance Proposition 10.1.2 in [29]), we obtain

Ê

[

κν
·

T

κν
·

t

(
∫ T

t
f
(

s, X̄t,x,π,Ǐt
s ,P

F̄µ
s

X̄
t,ξ̄,Ǐt
s

, Īt,Ǐts

)

ds+ g
(

X̄t,x,π,Ǐt
T ,P

F̄
µ
T

X̄
t,ξ̄,Ǐt
T

)

)
∣

∣

∣

∣

F̂µ
t

]

= E

[

κν
ω̌1

T

(
∫ T

t
f
(

s, X̄t,x,π,Ǐt(ω̌)
s ,P

F̄µ
s

X̄
t,ξ̄,Ǐt(ω̌)
s

, Īt,Ǐt(ω̌)s

)

ds+ g
(

X̄
t,x,π,Ǐt(ω̌)
T ,P

F̄
µ
T

X̄
t,ξ̄,Ǐt(ω̌)
T

)

)]

= JR(t, x, π, Ǐt(ω̌), ν
ω̌1
) ≤ sup

ν∈Vt

JR(t, x, π, a0, ν),

P̂-a.s., for any a0 ∈ A (recall from Theorem D.1 that supν∈Vt
JR(t, x, π, a0, ν) does not depend

on a0 ∈ A). Then, since by Theorem D.1 we have that supν∈Vt
JR(t, x, π, a0, ν) = V (t, x, π), we

deduce that (D.11) holds, which concludes the proof. 2
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