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Abstract

The modeling of Lithium-ion batteries usually utilizes discrete-time system identification meth-

ods to estimate parameters of discrete models. However, in real applications, there is a fun-

damental limitation of the discrete-time methods in dealing with sensitivity when the system is

stiff and the storage resolutions are limited. To overcome this problem, this paper adopts direct

continuous-time system identification methods to estimate the parameters of equivalent circuit

models for Lithium-ion batteries. Compared with discrete-time system identification methods,

the continuous-time system identification methods provide more accurate estimates to both fast

and slow dynamics in battery systems and are less sensitive to disturbances. A case of a 2nd-order

equivalent circuit model is studied which shows that the continuous-time estimates are more robust

to high sampling rates, measurement noises and rounding errors. In addition, the estimation by the

conventional continuous-time least squares method is further improved in the case of noisy output

measurement by introducing the instrumental variable method. Simulation and experiment results

validate the analysis and demonstrate the advantages of the continuous-time system identification

methods in battery applications.
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1. Introduction

Lithium-ion batteries have been regarded as a promising candidate for energy storage in elec-

tric vehicles due to their acceptable energy and power density compared to other types of energy

storage devices [1]. To ensure safe and reliable operation of electric vehicles, the basic condi-

tions of battery packs need to be monitored by the battery management systems (BMS), including

voltage, current and temperature. Moreover, some essential states of the batteries also need to

be estimated by BMSs, such as state of charge (SoC), state of heath (SoH), and state of power

(SoP). Since these states are usually associated with complex electrochemical reactions and can-

not be directly measured by physical sensors, researchers need to refer to model-based estimation

algorithms.

Among the most commonly applied modeling approaches, the electrochemical model provides

high accuracy in estimation since it originates from the first principles of underlying electrochem-

istry. However, the accurate estimation is achieved at the cost of high complexity in data pro-

cessing, which requires a significant amount of memory space and computational power to cope

with partial differential equations and unknown parameters. This makes this method impractical

in real-time applications.

In contrast, the equivalent circuit model (ECM) is widely accepted in the application level

because of its simplicity and ease in online implementation. Equivalent circuit modeling utilizes

the system identification techniques to relate the input and output behavior of the battery with

circuit elements [2, 3]. An nth-order ECM of Lithium-ion batteries is shown in Fig. 1. The n-RC

networks can be interpreted as various time domain characteristics of the physical processes and

chemical reactions within the battery cell, the series resistance R0 is the internal resistance of the

battery, and the voltage source represents the electrochemical equilibrium potential at different

states, also known as open circuit voltage (OCV) [4].

All the aforementioned ECM parameters change as SoC changes, but the parameters can be

regarded as constant when SoC variation is small, especially in the carefully designed character-
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Figure 1: nth order ECM for Lithium-ion batteries.

ization profiles. The battery characterization determines the best estimates of all the parameters

at different SoCs. In general, the OCV is obtained by experiments, and the current and voltage

responses in the hybrid pulse power characterization (HPPC) test are used to determine the values

of n-RC networks and R0 at different SoCs [5, 6, 7, 8].

Different parameter identification methods can be employed to determine the unknowns. The

most common approach uses the so-called indirect approach where the parameters of an equiva-

lent discrete-time model are first estimated from which the continuous-time parameters are then

derived in a second step. Numerical searching methods utilize global/local searching algorithms

to find the best fit parameters, among which the genetic algorithm (GA) and particle swarm opti-

mization are widely applied [9, 10]. The disadvantages of such methods are: 1) the convergence

to global optimization is not guaranteed given perturbations, and the result is sensitive to initial

condition selection; 2) a constant searching time is not assured, which limits their application in

real-time. A more robust method is to use curve fitting tools to fit constant current charging or

rest periods of experiment data with exponential functions [11]. The limitation of this method

lies in its ignorance of dynamic inputs in tests, thereby resulting into large voltage errors when

dynamic inputs are applied. The standard discrete-time least squares (DT LS) method results in

3
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the best estimation of battery parameters with both static and dynamic inputs in terms of minimiz-

ing the residual. The DT LS method is faster and requires less memory than numerical searching

methods. It has been adapted to recursive least squares (RLS) methods and RLS methods with

forgetting factor for online estimation [12, 13, 14, 15].

As the wide application of the discrete-time model identification in Lithium-ion batteries, re-

searchers have encoutered a limitation that the sampling time needs to be chosen with special care.

If the sampling time is too large, information on the fast dynamics will be lost, whereas too small a

sampling time will result numerical problems, that is, the discrete poles accumulate within a small

area close to the boundary of the unit circle [16]. Since the battery system is a typical stiff system

with both fast and slow dynamics [17], the selection of sampling time is extremely difficult: rapid

sampling is required to capture the fast dynamics, however, it will lead to large discrepancies in

parameter estimation due to the existence of slow dynamics [18, 19]. Given limited storage res-

olution, when the discrete poles are closer to the stability boundary, the discrete system is more

prone to numerical precision of the parameters and the location of the discrete poles [20]. It is also

concluded by simulation in [21] that the sensitivities to disturbance of the resistance and capaci-

tance values in the RC networks increase quasi-linearly as sampling time decreases, which brings

difficulties in accurate system identification.

The direct continuous-time system identification has been studied as opposed to the indirect

discrete-time system identification [22, 23]. Compared with discrete-time identification meth-

ods, the advantages of the continuous-time identification methods are 1) the physical world is

continuous and it provides good insight of system properties; 2) the continuous-time identification

method avoids discretization that gives rise to undesired high sensitivity issues, and thus can better

deal with stiff systems [24]. More detailed differences between continuous-time and discrete-time

identification are provided in [18][25].

To the authors’ best knowledge, the continuous-time approaches have not been analyzed and

compared with discrete-time identification methods in battery applications. The novelty of this

paper is 1) the continuous-time system identification methods are utilized to identify system pa-

rameters of Lithium-ion batteries; 2) the advantages of continuous-time system identification are

demonstrated in detail by analytical analysis, simulation and experiment; 3) The instrumental vari-
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able (IV) method is applied to improve the basic continuous-time least squares estimates. In this

paper, the continuous-time and discrete-time nth-order ECM are first introduced. Then the sys-

tem identifiability and sensitivity of the two methods are compared and discussed. Next, a case

is studied to identify the parameters of a 2nd-order ECM by continuous-time system identifica-

tion methods. The continuous-time least squares solution is obtained after a state variable filter

(SVF) is applied to pre-process the sampled data, and the estimation is further improved with the

IV based estimator for coping with the measurement noise. Simulation and experiment results

agree with the analysis and demonstrate the advantages of continuous-time parameter estimation

methods in real battery applications.

2. Parameter identification of continuous-time and discrete-time battery models

2.1. Continuous-time battery model

The continuous-time transfer function of the nth-order ECM depicted in Fig. 1 can be written

as
H(s) =

VOCV(s) − Vbatt(s)
I(s)

=
V(s)
I(s)

=
R1

R1C1s + 1
+

R2

R2C2s + 1
+ · · · +

Rn

RnCns + 1
+ R0

(1)

where VOCV(s) = L{vOCV(t)}, Vbatt(s) = L{vbatt(t)}, I(s) = L{i(t)}, and L{·} is the notation for the

Laplace transform.

This function can be rewritten as

(sn + a1sn−1 + · · · + an−1s + an)V(s) = (b0sn + · · · + bn−1s + bn)I(s) (2)

where all the coefficients are functions of the unknown circuit parameters. Define

θ = [a1 · · · an−1 an b0 · · · bn−1 bn]T

= f (R1, · · · ,Rn−1,Rn,C1, · · · ,Cn−1,Cn,R0)
(3)

where f : R2n+1 → R2n+1 maps the circuit parameters to the equation unknowns.

Equation (2) can be directly written into a regression form as

v(n)(t) = ϕ(t)θ (4)
5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where v(n)(t) denotes the nth time-derivative of v(t) = vOCV(t) − vbatt(t), and ϕ(t) is the regression

vector given by

ϕ(t) = [−v(n−1)(t) · · · − v(t) i(n)(t) · · · i(t)] (5)

In practice, the measured terminal voltage of batteries is usually contaminated by noises.

Therefore, an equation error e(t) is added to the given regression form. Thus a complete model is

given by

v(n)(t) = ϕ(t)θ + e(t) (6)

2.2. Discrete-time battery model

To obtain the discrete-time battery model, by using the correct piecewise constant assumption

for the current input in HPPC tests, the zero-order hold (ZOH) equivalent of (1) can be derived by

(7).

H(z) = (1 − z−1)Z
{H(s)

s

}
(7)

whereZ{·} is the notation for the z-transform.

Thus the continuous-time transfer function (1) yields to

H(z) =
V(z)
I(z)

=
R1(1 − e−

Ts
R1C1 )

z − e−
Ts

R1C1

+
R2(1 − e−

Ts
R2C2 )

z − e−
Ts

R2C2

+ · · · +
Rn(1 − e−

Ts
RnCn )

z − e−
Ts

RnCn

+ R0 (8)

and it can be rewritten as

(1 + c1z−1 + · · · + cnz−n)V(z) = (d0 + d1z−1 + · · · + dnz−n)I(z) (9)

where Ts is the sampling interval, and the coefficients in (9) are functions of the unknown param-

eters as well as Ts. Define

θd = [c1 · · · cn d0 d1 · · · dn]T

= g(R1, · · · ,Rn−1,Rn,C1 · · · ,Cn−1,Cn,R0,Ts)
(10)

where g : R2n+2 → R2n+1 maps the circuit parameters and Ts to the equation unknowns.

Similar to the continuous-time model, a regression form of (9) with a noise term ε(k) can be

written as

v(k) = ϕd(k)θd + ε(k) (11)
6
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where

ϕd(k) = [−v(k − 1) · · · − v(k − n) i(k) i(k − 1) · · · i(k − n)] (12)

and v(k) denotes the sampled value of v(t) at time-instant tk.

2.3. System identifiability

The structural identifiability describes the uniqueness of parameters given a dynamic model

with noise-free and persistent excitations [26, 27]. The battery system is globally identifiable if

there is a unique solution θ, θ ∈ Θ ⊂ R2n+1, for (6) and (11); the system is locally identifiable

if there are a finite number of solutions in Θ; the system is unidentifiable if there are an infinite

number of solutions in Θ.

The identifiability of Randles ECMs are discussed in [28]. The nth-order ECM discussed in

this paper has similar structure as that of the Randles models, except for an additional capacitor

connecting in series with the RC networks. Similar derivations hold for the ECM of interest in this

paper as well.

Given the continuous system transfer function as (1), if two sets of circuit parameters lead to

the same transfer function of an ECM, then

R1

R1C1s + 1
+ · · · +

Rn

RnCns + 1
+ R0 =

R∗1
R∗1C

∗
1s + 1

+ · · · +
R∗n

R∗nC∗ns + 1
+ R∗0, for all s (13)

A necessary condition for (13) to hold is

(s +
1

R1C1
) · · · (s +

1
RnCn

) = (s +
1

R∗1C
∗
1
) · · · (s +

1
R∗nC∗n

), for all s (14)

Since an n degree polynomial is uniquely characterized by its n distinct roots, the assignments

of (− 1
R∗1C∗1

,· · · ,− 1
R∗nC∗n

) in (14) need to be the permutations of (− 1
R1C1

,· · · ,− 1
RnCn

). Assume the order

of the distinct roots is strictly defined, i.e. R1C1 < · · · < RnCn and R∗1C
∗
1 < · · · < RnC∗n. Since

the functions of 1/(s + 1
RiCi

) in (14) are linear independent, RiCi = R∗i C
∗
i can be obtained and

consequently Ri = R∗i from (13) for i = 1, 2, · · · , n. Therefore, all the parameters in the model

structure of (1) are uniquely determined. The one-to-one mapping of f in (3) ensures the uniquely

determined θ in the reparametrization.

7
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Similar derivation holds for discrete time ECM identifiability. Therefore, the conclusion can be

drawn that both continuous-time and discrete-time nth-order ECMs are globally identifiable when

the order of the RC networks is strictly defined.

2.4. Sensitivity of discrete-time model poles

The time-constants of an ECM describe essential system properties of the circuit. Physically,

they give the time domain characteristics of voltage variations due to different chemical or physical

processes upon charge and discharge. The time-constants τi in the ECM are calculated by

τi = RiCi, i = 1, 2, · · · , n (15)

Note that the time-constants are closely related to the eigenvalues, or pole locations of the

system as

τi =
1
|λi|

, i = 1, 2, · · · , n (16)

where λi is the ith eigenvalue of the system.

In order to characterize the fast dynamics of a system, the sampling frequency should be high

enough. A rule of thumb [19] is to select a sampling time such that

fs ≥ 2 ×
1
τmin
⇔ |λmax|Ts ≤

1
2

(17)

where λmax is the largest eigenvalue, τmin is its corresponding smallest time-constant in the system,

Ts is the sampling time and fs is the sampling frequency. In practical applications, the sampling

frequency fs is usually set to be higher than the boundary value of 2/τmin to ensure sufficient

sampling.

However, a high sampling rate gives rise to undesirable sensitivity issues as illustrated in Fig.

2. It is well known that the negative real poles in the s-domain map to the interval between the

origin and (1, 0) on the real axis of z-domain by (18). As λiTs → 0, the poles in the z-domain

approaches (1, 0).

zi = eλiTs (18)

8
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Figure 2: Discrete pole converges to (1, 0) in z-plane as λTs → 0.

Given (16), the sensitivity of the continuous-time model time-constant with respect to z-domain

pole location can be derived as (19).

S =
∣∣∣∣ z
τ

∂τ

∂z

∣∣∣∣ =
∣∣∣∣e− Ts

τ

τ

∂τ

∂e−
Ts
τ

∣∣∣∣ =
e−

Ts
τ

τ

τ2

Tse−
Ts
τ

=
1
|λ|Ts

= τ fs (19)

The result shows that the sensitivity is the product of sampling frequency and time-constant.

Without considering the hardware cost, high sampling frequency is desired so that the discrete-

time system is a good approximation of the continuous-time system. However, equation (19)

implies that faster sampling yields to higher sensitivity of the discrete-time model identification to

external disturbances and computation errors.

One can also observe from (19) that the sensitivity is larger for larger time-constants. In a

practical on-board battery monitoring system, the sampling frequency can be 100 Hz, and typical

time-constant values for 2nd-order ECMs are 30 s and 1,000 s [29], thus the sensitivities can be

locally as high as 3,000 and 100,000 respectively. It indicates that a small variation in z-domain

pole estimation leads to a significant change in time-constant estimation. In the extreme condition,

as λTs → 0, the sensitivity goes to infinity.

It is important to state that such a sensitivity issue stems from the discretization process, and it

does not exist in the continuous-time model identification cases.

9
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2.5. Prescaling in fixed-point storage

Most on-board vehicular microprocessors use fixed-point data storage systems. Such repre-

sentation limits the information that can be stored during calculation due to precision loss and

overflow.

In the continuous-time model identification process, given the stiffness of battery systems, the

time-constants vary in one or two orders of magnitude. Since the to-be-estimated coefficients are

closely related to the multiplication of different pole locations, these coefficients can be different

in several orders of magnitude. If the magnitude of the coefficients is too small, it will lead to

big discrepancies in storage, because of the fixed minimum resolution. In order to solve this

problem, a parameter prescaling technique is used to maintain the coefficients in the same order of

magnitudes, as

θ̃ = Uθ (20)

where the prescaling matrix

U =



u1 0 · · · 0

0 u2
. . .

...
...

. . .
. . . 0

0 · · · 0 u2n+1


(21)

and θ is the parameter vector defined in (3).

For instance, if bn in θ has a magnitude in the order of 10−9, whereas the processor is 16 bits,

i.e. the resolution is 2−16 = 1.5× 10−4, it is impossible to store bn in such processor for any further

calculation. In this case, u2n+1 in U can be set to 109 such that u2n+1bn can be stored properly. Then

θ can be retrieved by

θ = U−1θ̃ (22)

In the discrete-time model identification, the dominating poles are close to 1, thus the to-be-

estimated coefficients have similar order of magnitudes. Therefore the prescaling is not necessary.

2.6. Summary of the differences between continuous-time and discrete-time model identification

The major differences of continuous-time and discrete-time model identification are listed in

Table 1. In summary, the advantages of continuous-time over discrete-time model identification
10
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are

a) The identified parameters do not change as Ts changes, as shown in (3) and (10), where θd

is related to Ts.

b) High sampling rate to avoid information loss does not lead to undesired high sensitivity

issues.

c) The continuous-time approach includes inherent filtering, so it is more robust to measure-

ment noises. This is to be discussed in detail in Section 3.

d) Additional advantages have been recently discussed and illustrated in [18] and [23].

The disadvantage of continuous-time model identification are

a) The prescaling is required for application in fixed-point storage.

b) More computational power is needed to filter the input/output. This is to be discussed in

Section 3.

Table 1: Major differences between discrete-time (DT) and continuous-time (CT) model identification.

DT CT

a) Uses z-transform. Uses Laplace transform.

b) Deals with difference equations. Deals with differential equations.

c) θd changes as Ts changes. θ remains unchanged.

d) DT models are derived from CT, and go back to CT. Remains as CT.

e) Small Ts or large τ make the system identification No undesired sensitivity issues.

sensitive to rounding errors and noises.

f) Does not have prefiltering. Has inherent prefiltering.

g) Works easily with fixed-point storage. Requires prescaling in fixed-point storage.

h) Requires less computation. Requires more computation in filtering.
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3. Continuous-time identification of battery models

3.1. Conventional least squares based SVF method

The continuous-time model parameter can be obtained from the least squares solution of θ in

(6). However, the time-derivatives of the input and output are usually not measured. One tradi-

tional approach to handle the time-derivatives measurement problem is to use the state variable

filter (SVF) method (see e.g. [16]), which generates filtered (smoothed) versions of the required

time-derivatives. A typical SVF is in the form of

Ln(s) =
( α

s + α

)n
(23)

where n is the highest system order, and α determines the cut-off frequency of the SVF. The

choice of α is recommended to be slightly higher than the estimated bandwidth of the system [16].

Applying the SVF to (6) yields the linear model as (24).

v(n)
sv f (t) = ϕsv f (t)θ + e′(t) (24)

where ϕsv f (t) = [−v(n−1)
sv f (t) · · · − vsv f (t) i(n)

sv f (t) · · · isv f (t)], v(n)
sv f (t) = L−1{snLn(s)V(s)},

i(n)
sv f (t) = L−1{snLn(s)I(s)}, and L−1{·} denotes the inverse Laplace transform.

Based on N sampled measurements of both input and output signals at time instants tk, k =

1, ...,N, the continuous-time least squares based state variable filter (CT LSSVF) estimator of θ is

expressed as

θ̂lssv f =

[ N∑
k=1

ϕT
sv f (tk)ϕsv f (tk)

]−1 N∑
k=1

ϕT
sv f (tk)v

(n)
sv f (tk) (25)

3.2. Improved instrumental variable based SVF method

The least squares solution is unbiased when the equation error is uncorrelated to the regressor,

whereas this is usually not true in real applications. In other words, θ̂lssv f converges to the true

parameter θ0 with the assumption of E[ϕT
sv f (tk)e′(tk)] = 0, but the least squares regressor ϕsv f (t)

contains the measured output voltage, which correlates with e′(t) by (24). In order to make the

continuous-time parameter identification consistent for correlated equation errors, the instrumental

variable (IV) method is introduced. The main idea of the IV method is to find an instrument

12
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ζ(tk) whose components are uncorrelated with e′(tk), i.e. 1
N

∑N
k=1 ζ

T
sv f (tk)e′(tk) = 0 [30]. The most

common IV method utilizes an auxiliary model to generate a noise-free estimate of output, as

ζsv f (tk) = [−w(n−1)
sv f (tk) · · · − wsv f (tk) i(n)

sv f (tk) · · · isv f (tk)] (26)

where wsv f (tk) is the noise-free estimate of voltage calculated by

wsv f (tk) = L−1{Ln(s)H(s, θ̂lssv f )I(s)
}

(27)

The continuous-time instrumental variable based state variable filter (CT IVSVF) estimator of

θ is given as

θ̂ivsv f =

[ N∑
k=1

ζT
sv f (tk)ϕsv f (tk)

]−1 N∑
k=1

ζT
sv f (tk)v

(n)
sv f (tk) (28)

The flow chart for the implementation of nth-order CT IVSVF battery parameter estimator is

summarized in Fig. 3.

It can be noticed that there is no further assumption or limitation of the operating conditions of

batteries in continuous-time identification, so long as the battery is in its defined normal operating

range. In addition, when dealing with stiff systems, the continuous-time identification method

does not require as high storage resolution as discrete-time identification does, because it does

not involve numerically dedicate transformation. Therefore, the continuous-time identification

methods are expected to have better performance over discrete-time methods, especially when the

system is stiff and the storage resolution is limited.

3.3. Model parameterization of the 2nd-order ECM

Based on the analysis in the previous sections, the continuous-time identification methods can

be applied to an ECM with any order. In the following sections, the 2nd order ECM is selected

because it is the simplest form to present a stiff system. Other than that, [31] concludes that

the 2nd order ECM is an optimum choice for implementation of most battery energy and power

management strategies.
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The continuous-time parameters for the 2nd-order ECM identification are given as

a1 =
1

R1C1
+

1
R2C2

a2 =
1

R1C1R2C2

b0 = R0 (29)

b1 = R0

( 1
R1C1

+
1

R2C2

)
+

1
C1

+
1

C2

b2 =
R0 + R1 + R2

R1C1R2C2

For comparison purposes, the discrete-time parameters are given as

c1 = −(e−
Ts

R1C1 + e−
Ts

R2C2 )

c2 = e−( Ts
R1C1

+
Ts

R2C2
)

d0 = R0 (30)

d1 = −R0

(
e−

Ts
R1C1 + e−

Ts
R2C2

)
+ R1(1 − e−

Ts
R1C1 ) + R2(1 − e−

Ts
R2C2 )

d2 = R0e−( Ts
R1C1

+
Ts

R2C2
)
− R1e−

Ts
R2C2 (1 − e−

Ts
R1C1 ) − R2e−

Ts
R1C1 (1 − e−

Ts
R2C2 )

Note that the continuous-time parameters are more complex functions of circuit parameters
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Figure 3: Implementation flow of CT IVSVF battery parameter estimator.
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only, while the discrete parameters are functions of both circuit parameters and Ts, as indicated in

(3) and (10).

4. Simulation results

4.1. Simulation setup

Simulations are set up in MATLAB to compare the performance of continuous-time and

discrete-time identification methods. In the simulation, the circuit of interest is assumed to have

R0 = 1 mΩ, R1 = 0.3 mΩ, R2 = 0.6 mΩ, τ1 = 30 s and τ2 = 1000 s, and the capacity of the

battery is 40 Ah. It needs to be noticed that the simulated system is a typical stiff system, because

it includes a fast and a slow time-constants.

The input excitation is shown in Fig. 6c. It consists of five pairs of discharge and charge

pulses, each lasting for 20 s. The amplitude of the pulse pairs are 0.5C, 1.0C, 1.5C, 2.0C and

2.5C, respectively, where C is a measure of current at which a battery is discharged to its nominal

capacity. The rest periods after each discharge pulses are 40 s, and the rest periods after each

charge pulses are 60 s. After the five pair of pulses, a 0.5C 2% SoC discharge is applied, followed

by a 1-hour rest.

Various sampling intervals are used in the simulation, which are set to be 1 s, 0.1 s, and 0.01

s, respectively. White Gaussian noises with different signal to noise ratios (SNR) are added to the

voltage output in the simulation to emulate the measurement noise of the system, such that

v(k) = vdet(k) + n(k) (31)

where vdet is the deterministic (or noise-free) voltage signal, n(k) is the measurement noise added

to the noise-free voltage signal, and v(k) is the noisy voltage measurement.

The SNR is defined as

SNRdB = 10 log10

σ2
vdet

σ2
n

(32)

where σ2
vdet

is the variance of vdet and σ2
n is the variance of the added noises. The standard deviation

of noises are chosen to be 0.01 mV, 1 mV and 10 mV respectively. Therefore the corresponding

SNR values are 62 dB, 22 dB and 2 dB, respectively.
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The SVF cut-off frequency is 0.01 rad/s. Unless otherwise specified, the intermediate data

storage for all the simulation is 16 bits, and the prescaling techinique introduced in Sec. 2.5 is

applied to all simulation.

Monte Carlo simulations are used to evaluate the performance of the model identification meth-

ods, such that 100 different noise realizations are generated for each of the sampling intervals and

noise levels. The Bode plots of the identified systems are presented for different methods in var-

ious conditions. Except DT LS, CT LSSVF and CT IVSVF methods, it is also interesting to see

the performance of DT LS method with the same pre-filtering as in the continuous-time methods,

as suggested by [12]. The Bode plots of estimated models based on discrete-time methods are

presented in Fig. 4, and those based on continuous-time methods are presented in Fig. 5.

4.2. Discussion of simulation results

Fig. 4a and Fig. 4b give the Bode plots for the CT models identified by the indirect DT LS-

based method. The identified models are clearly biased at the low frequency ends. As the noise

level or sampling rate increases, the identified systems are more biased.

The Bode plots for the systems identified by the DT LS methods with both input and output

filtering are given in Fig. 4c and Fig. 4d. The filter applied is the same as L2(s) with same

cut-off frequency as SVF. It is hard to conclude solely from the two plots whether the pre-filtering

improves the system identification, but at least the pre-filtering does not provide the desired system
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(a) DT LS method for different SNR (Ts=0.1 s, 16 bits).
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(b) DT LS method for different Ts (SNR=22dB, 16 bits).
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(c) DT LS method with pre-filtering for different SNR

(Ts=0.1 s, 16 bits).
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(d) DT LS method with pre-filtering for different Ts

(SNR=22dB, 16 bits).
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(e) DT LS method with pre-filtering for different SNR

(Ts=0.1 s, 64 bits).
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(f) DT LS method with pre-filtering for different Ts

(SNR=22dB, 64 bits).

Figure 4: Monte Carlo simulation with different SNR and Ts. Bode plots of CT models from indirect DT methods.

identification. Later simulation with 64 bit storage resolution in Fig. 4e and Fig. 4f demonstrates

the effectiveness of the pre-filtering in high storage resolutions. The difference in the identification

performance indicates that the pre-filtering is largely influenced by the rounding errors in discrete-

time identification.

Fig. 5a and Fig. 5b present the identification results of CT LSSVF method in various con-

ditions. The performance of system identification is remarkably improved, which is due to the

application of data pre-filtering and avoidance of discretization.
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(a) CT LSSVF method for different SNR (Ts=0.1 s, 16

bits).
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(b) CT LSSVF method for different Ts (SNR=22dB, 16

bits).
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(c) CT IVSVF method for different SNR (Ts=0.1 s, 16

bits).
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(d) CT IVSVF method for different Ts (SNR=22dB, 16

bits).

Figure 5: Monte Carlo simulation with different SNR and Ts. Bode plots of CT models from direct CT methods.

At last, Fig. 5c and Fig. 5d show that CT IVSVF identification has accurate identifications

in all situations, where the Bode plots of the identified systems overlap that of the true system

with a high fidelity except when the SNR is equal to 2dB when a bias can be observed in the

low-frequency part of the response.

In summary, most of the indirect discrete-time identification methods lead to large discrepan-

cies in system identification, especially in the presence of noises and small sampling intervals; the

simple CT LSSVF estimates are clearly less biased due to SVF pre-filtering and low sensitivity to
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Table 2: Specification of battery under test.

Material Lithium-ion polymer

Charge/discharge capacity 40.83/40.61 Ah

Nominal voltage 3.7 V

Maximum charge voltage 4.2 V

Minimum discharge voltage 2.7 V

rounding errors, and the CT IVSVF estimates are both accurate and robust in all situation.

5. Experimental results

5.1. Battery tests

In order to identify the parameters of a Lithium-ion polymer cell, battery characterization

experiments are conducted at room temperature (22◦C∼25◦C). The specification of the battery

under tests is given in Table 2. The procedure of the characterization tests is shown in Fig. 6a.

The sampling rate in all the experiments is 1 Hz.

The capacity test consists of three charge/discharge cycles. In each cycle, the battery is charged

with a constant current of 0.5C until the terminal voltage reaches the maximum charge voltage.

Then the voltage is kept at the maximum charge voltage until the charge current is below 1/20C.

After that, the battery is discharged at 0.5C until the minimum discharge voltage is reached. A 1 hr

rest is applied after each charge/discharge operation. The charge/discharge capacity are calculated

as the average value of the three cycles.

The charge/discharge OCV-SoC curves are obtained at 10% SoC step with 0.5C charge/discharge

rate and 5 hr rest, as shown in Fig. 6b. It can be observed that the charge OCV curve is

higher than the discharge curve due to the hysteresis effect. The maximum difference between

charge/discharge curves is 22.6 mV. The average value of charge/discharge OCV curves is used in

the model calculation for simplicity.
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(a) Battery characterization procedure.
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Figure 6: Battery characterization and validation experiments.

The HPPC test profile is the same as mentioned in Section 4. The HPPC test is repeated

between 10% and 90% SoC with 2% SoC step. The current input and voltage output of the HPPC

pulses at SoC=50% are shown in Fig. 6d.

Finally, Urban Dynamometer Driving Schedule (UDDS) cycles with 10 minutes rest periods

are applied consecutively to the battery cell to validate the identified model. The initial SoC for

UDDS test is 90%, and the test is terminated after the first cycle when SoC drops below 20%. The

current profile of UDDS is scaled such that the maximum discharge current is 100 A.
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5.2. Discussion of experimental results

In order to demonstrate the advantages of continuous-time system identification, the perfor-

mances of CT LSSVF and CT IVSVF estimators are compared with DT LS method and DT LS

with pre-filtering. The cut-off frequency for both of the filters are 0.025 rad/s and the storage

resolution is 16 bits.

The voltage outputs of the simulated models and experiments in UDDS are plotted in Fig. 7a,

and the zoomed-in range between 5,900 s and 7,400 s are shown in Fig. 7b. The results show that

i) The indirect discrete-time methods have the larger overall error.

ii) The DT LS method with pre-filtering has similar noise levels to the CT LSSVF method in

some of the cycles, however, the systems identified are clearly biased in the 5th, 6th and

9th cycle. The defect in robustness is mainly caused by its high sensitivity to unmodeled

dynamics and colored noises in the experiment.

iii) The two direct continuous-time identification methods have better performance over other

methods. Furthermore, CT IVSVF estimator gives better estimation because the newly in-

troduced instrumental variable is less correlated to equation error.
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Figure 7: Discrepancies of different identification methods.

Based on the findings in simulation results, the DT LS method tends to estimate the poles of

the system to be larger, then the corresponding time-constants are smaller. This can be observed in

Fig. 8 as well, where the time-constant estimates of DT LS are the smallest among all the methods.
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Figure 8: Time-constant estimates from experimental data with different methods.
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It needs to be noticed that DT LS presents acceptable results in experiments because the UDDS

cycle mainly consists of high frequency contents, where it gives reasonable identification in the

simulation as well. However, it has large bias in larger time-constant estimates, which will lead to

larger discrepancies when the input is constant. This can be visualized by its larger discrepancies

at beginning of rest periods between UDDS cycles.

The mean absolute error (MAE) and root mean squares error (RMSE) of the aforementioned

estimators within the whole experimental period are listed as in Table 3. It validates that the

continuous-time identification methods have better overall performance and CT IVSVF method

gives voltage estimations with the smallest error.

6. Conclusion

This paper has presented the advantages of continuous-time system identification methods in

battery ECM parameter estimation. The combination of fast dynamics induced by charge transfer

and slow dynamics from diffusion causes the dynamics of a battery to exhibit stiff system behavior.

Continuous-time identification reduces the sensitivity of the model parametrization in case of a

stiff dynamic system, leading to improvements on battery parameter estimation in simulation and

experiment results, especially when battery dynamic parameters are stored in fixed precision.

The general modeling of both continuous-time and discrete-time nth-order ECM is first dis-

cussed. Then it is shown that the nth-order ECM is identifiable if the order of the time-constants

is strictly defined. The comparison between continuous-time and discrete-time methods indicates

that discrete-time identification methods are less robust due to undesired sensitivity issues in trans-

formation of discrete domain parameters. In continuous-time parameter identification, SVF is used

Table 3: MAE and RMSE of model voltage estimation in whole UDDS validation.

DT LS DT LS filter CT LSSVF CT IVSVF

MAE [mV] 8.59 8.71 6.34 4.27

RMSE [mV] 9.35 10.36 6.96 4.95
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to smoothen the time-derivative terms. After that, the IV method is applied to further increase the

estimation accuracy by reducing the correlation between equation error and regressor.

Simulation results show that the continuous-time identification methods demonstrate higher

accuracy in stiff system estimations given different sampling intervals and noise levels, because of

the inherent SVF pre-filtering and the avoidance of pole discretization. Characterization experi-

ments are conducted and different identification methods are used to identify the battery parame-

ters, including DT LS, DT LS with pre-filtering, CT LSSVF and CT IVSVF. The results indicate

that the continuous-time identification methods results in the smallest mean absolute error and

root mean square error. Among all, the best output voltage prediction is obtained by CT IVSVF

method.

This research bridges the gap between battery parameter estimation algorithm development

and real applications, where the system is stiff and the storage resolutions are limited. It is im-

portant to note that the offline continuous-time parameter estimation can be easily adapted online.

With a more accurate battery model, the estimation of other battery states can be improved accord-

ingly, such as SoC, SoH and SoP. The future work includes the implementation of the improved

recursive continuous-time system identification methods to battery online state estimation.
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