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Regularization in Keller-Segel type systems and the De Giorgi
method

Benôıt Perthame∗ Alexis Vasseur †

June 11, 2011

Abstract

Fokker-Planck systems modeling chemotaxis, haptotaxis and angiogenesis are numerous and
have been widely studied. Several results exist that concern the gain of Lp integrability but methods
for proving regularizing effects in L∞ are still very few.

Here, we consider a special example, related to the Keller-Segel system, which is both illumi-
nating and singular by lack of diffusion on the second equation (the chemical concentration). We
show the gain of L∞ integrability (strong hypercontractivity) when the initial data belongs to the
scale-invariant space.

Our proof is based on De Giorgi’s technique for parabolic equations. We present this technique in
a formalism which might be easier that the usual iteration method. It uses an additional continuous
parameter and makes the relation to kinetic formulations for hyperbolic conservation laws.

Key-words De Giorgi method, entropy methods, Regularizing effects, Hypercontractivity, Keller-
Segel system, haptotaxis.

AMS Class. No. 35K55, 35B65, 92C17

1 Introduction

The Keller-Segel [19] model is certainly the simplest and best known model of a nonlinear Fokker-
Planck equation where the nonlinearity comes from the drift term. The fact that, despite mass
is globally conserved, singularities occur in finite time for large data while smooth solutions exist
globally for small data ([17, 25, 26, 20, 21, 22, 3]) is both a generic property of conservative nonlinear
PDEs and a symptom of the inherent mathematical difficulties of such problems.

Our first purpose here is to exemplify, in the case of a particularly singular coupling, the use of the
De Giorgi method [13] for proving the gain of L∞ property within the framework of such model. This
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is the reason why we prefer, in place of the Keller-Segel system, another Fokker-Planck equation more
related to the modeling of haptotaxis and angiogenesis and which reads as

∂
∂tn = ∆n−∇ · [nχ(c)∇c], t > 0, x ∈ Rd,

∂
∂tc = −c n, t > 0, x ∈ Rd,

n(0, x) = n0(x) ≥ 0, c(0, x) = c0(x) ≥ 0, x ∈ Rd.

(1)

Here n(x, t) denotes the population density of cells moving according to biased random motion towards
high values of a substance concentration denoted by c(x, t) and which is consumed by the cells. We
refer to [12, 15, 23] for more realistic models in this area and more details on the modeling aspects. The
sensitivity χ(c) is a given smooth positive function on R+, generally chosen as a decreasing function
since sensitivity is lower for higher concentrations of the chemical because of saturation effects; a
related case with sensitivity χ = 1/c has a particularly interesting mathematical structure [18, 24].

Weak solutions to (1) are treated in [9, 10] and propagation of L∞ bounds in [11]. For this model
we prove the following theorem.

Theorem 1.1 Let d ≥ 2. A classical solution to (1) with c0 ∈ L∞(Rd) and ‖n0‖
L
d
2 (Rd)

≤ K(d, ‖c0‖∞)

small enough, satisfies for some constant C
(
d, ‖n0‖

L
d
2 (Rd)

, ‖c0‖L∞(Rd)

)
‖n(t)‖L∞(Rd) ≤

C(d)
t

∀t > 0. (2)

This result expresses both the regularizing effect and time decay of the heat equation. Not only it
establishes these properties for a more singular system than those used presently (parabolic or elliptic
equations on c) but it also treats the critical space L

d
2 which frequently appears in the Keller-Segel

type of models. Indeed L
d
2 is the scale-invariant space for these coupled systems.

Our second motivation is to write the De Giorgi method in terms which make directly the connection
with recent tools used in hyperbolic PDEs and make the universality of the formalism somehow
remarkable. Namely, we have in mind the kinetic formulations for conservation laws [27], (see also
[4, 5]) and level sets (the relation between level sets and kinetic formulations was already notices in
[14]).

The use of Stampachia truncations, which is fundamental in the De Giorgi method, was used for
reaction-diffusion system for the first time in [1]. It was also used in [16, 7] to study the global
regularity for some reaction-diffusion systems. The idea to replace the original method which uses
iterations on a discrete parameter by the use of a continuous ’kinetic’ parameter (and differentiation in
this parameter) has already been used in the elliptic case in [28]. Here we show it also fits to parabolic
equations.

In order to motivate our method, we begin with the ’kinetic’ proof of De Giorgi’s result; section 2
deals with the elliptic case and section 3 with the parabolic case. With this material in hands, we can
handle the case of system (1) and this is done in section 4.
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2 De Giorgi method. Elliptic case

We illustrate our approach to the derivation of L∞ regularizing effects by the simpler case of elliptic
equations. Let u satisfy in the ’kinetic’ or ’entropy’ sense (that is the related inequality holds for
(u− ξ)+) the inequality

−
d∑

i,j=1

∂

∂xi
[aij(x)

∂

∂xj
u] ≤ f ∈ Lp(Rd), u+ ∈ Lp

′
(Rd),

1
p

+
1
p′

= 1, p >
d

2
, (3)

with aij(x) ≥ Id, measurable. We wish to prove the standard result that u is upper bounded, namely

u(x) ≤ Cp
(
‖f‖p, ‖(u)+‖p′

)
. (4)

(Step 1) For ξ ≥ 0, we have (Sobolev injection for the first inequality and direct estimate on (3) for
the second)

‖(u− ξ)+‖22d/(d−2) ≤ C(d)
∫

Rd
|∇(u− ξ)+|2 ≤ C(d)‖f‖p ‖(u− ξ)+‖p′ . (5)

Notice that because p > d
2 , we have p′ < d

d−2 and p′ < p′ + 1 < 2d−1
d−2 <

2d
d−2 . Therefore, from (5) we

conclude that (u − ξ)+ ∈ Lp
′+1 (and this leaves place for the case of dimension 2 using Gagliardo-

Nirenberg-Sobolev inequality instead of Sobolev).

(Step 2) Next, we claim that

d

dξ

∫
(u− ξ)p

′+1
+ = −(p′ + 1)

∫
(u− ξ)p

′

+ ≤ −C
(∫

(u− ξ)p
′+1

+

)β
,

with,

β =
p′

p′ + 1
2

θ + 1
, 0 < θ < 1.

Indeed, this inequality follows from interpolation

‖(u− ξ)+‖p′+1 ≤ ‖(u− ξ)+‖θp′ ‖(u− ξ)+‖(1−θ)2d/(d−2) ≤ C(f)‖(u− ξ)+‖θ+(1−θ)/2
p′ ,

with
1

p′ + 1
=
θ

p′
+ (1− θ)d− 2

2d
.

(Step 3) It remains to notice that β < 1 for p > d/2. To prove it (i) notice that for p = d/2,
p′ = d/(d − 2), therefore 1

p′+1 = d−2
d

1+θ
2 , and β = 1, (ii) for p > d/2 then d−2

d < 1
p′ and thus

1
p′+1 <

θ
p′ + 1−θ

2p′ = 1
p′

1+θ
2 .

Finally for ξ = 0, the function F (ξ) :=
∫

(u− ξ)p
′+1

+ is bounded and the inequality

F ′(ξ) ≤ −CF (ξ)β, 0 ≤ β < 1,
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shows that F (·) vanishes for a finite value ξmax.
As mentioned earlier, [28] used this method and also proved the Hölder regularity.

We can obtain the following explicit dependence on the norms of f and (u)+:

u(x) ≤ Cp
√
‖f‖p‖(u)+‖p′ , for d = 2,

u(x) ≤ Cp
(
‖(u)+‖2−d/pp′ ‖f‖d/p′p

) 1

2− dp+ d
p′ for d > 2.

Indeed, consider for ε, λ > 0

uε,λ(x) = λu(εx),
fε,λ(x) = ε2λf(εx).

It is also solution to (3) for the diffusion matrix aij(εx) which still verifies aij(εx) ≥ Id. We choose
ε, λ such that

‖(uε,λ)+‖p′ = 1

‖fε,λ‖p = 1.
(6)

From above we have uε,λ(x) ≤ Cp, for a universal constant Cp. So u(x) ≤ Cp/λ for any x. To compute
λ, we check that (6) is equivalent to

λε−d/p
′‖(u)+‖p′ = 1,

λε2−d/p‖f‖p = 1.

This leads to

λ−1 =
√
‖f‖p‖(u)+‖p′ , for d = 2,

λ−1 =
(
‖(u)+‖2−d/pp′ ‖f‖d/p′p

) 1

2− dp+ d
p′ for d > 2.

3 De Giorgi method. Parabolic case

Following the elliptic case we turn to the heat equation
∂u
∂t −

d∑
i,j=1

∂

∂xi
[aij(x)

∂

∂xj
u] ≤ 0,

(u0)+ ∈ Lp(Rd).

(7)

For ξ > 0, consider the ’energy’

U(ξ) = sup
0≤t≤∞

∫
Rd

(
u− ξη(t)

)p
+
dx+ 4

p− 1
p

∫ ∞
0

∫
Rd

∣∣∣∇(u− ξη(t)
)p/2

+

∣∣∣2 dxdt.
4



The weight in time that will come out of our analysis is

η(t) = t
− d

2p , 1 ≤ p ≤ ∞, (8)

and we will show that, for some ξ1 > 0, U(ξ1) vanishes which furnishes the regularizing effect in L∞

(strong hypercontractivity) by estimate

u(x, t) ≤ ξ1η(t). (9)

(Step 1) Because η(0) =∞, elementary manipulations of the equation (7) give the energy estimate,

U(ξ) ≤ 2pξ
∫ ∞

0

∫
Rd
|η̇(t)|

(
u− ξη(t)

)p−1

+
dxdt.

(Step 2) We prove, with a constant C(d), the inequality(∫ ∞
0

∫
Rd

(
u− ξη(t)

)q
+
dxdt

)p/q
≤ C(d) U(ξ), q = p

d+ 2
d

. (10)

This follows from the Sobolev inequality with r = 2∗ p2 , 1
2∗ = 1

2 −
1
d (here again, in dimension 2 one

should use Gagliardo-Nirenberg-Sobolev inequality instead)∫ ∞
0
‖
(
u− ξη(t)

)
+
‖pr dt ≤ C(d)

∫ ∞
0

∫
Rd

∣∣∣∇(u− ξη(t)
)p/2

+

∣∣∣2 dxdt,
or in other words

‖
(
u− ξη(t)

)
+
‖Lpt (Lrx) ≤ C(d)U(ξ)1/p,

that we can interpolate with
‖
(
u− ξη(t)

)
+
‖L∞t (Lpx) ≤ U(ξ)1/p.

To get LqtL
q
x, we choose q and θ̄ so as to verify

1
q

=
θ̄

p
+ 0,

1
q

=
θ̄

r
+

1− θ̄
p

,

and thus
1
q

=
p

q

2
p

(
1
2
− 1
d

) +
q − p
pq

=⇒ q

p
= 2− 2(

1
2
− 1
d

) = 1 +
2
d
.

(Step 3) We introduce a weight ν(t) that will be determined later on and we define the function

F (ξ) =
∫ ∞

0

∫
Rd
ν(t)

(
u− ξη(t)

)p
+
dxdt.
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We compute by interpolation and use of steps 1 and 2

F (ξ)1/p ≤
(∫∞

0

∫
Rd ν(t)

p−1
p(1−θ)

(
u− ξη(t)

)p−1

+
dxdt

)(1−θ)/(p−1)

×
(∫∞

0

∫
Rd
(
u− ξη(t)

)q
+
dxdt

)θ/q
≤ Cξθ/p

(∫∞
0

∫
Rd |η̇(t)|

(
u− ξη(t)

)p−1

+

) 1−θ
p−1

+ θ
p
dxdt,

with 1
p = θ

q + 1−θ
p−1 which is also

1 = θ
2p+ d

d+ 2
, 0 ≤ θ ≤ 1, (11)

and we need the compatibility conditions

ν(t)
p−1
p(1−θ) = |η̇(t)| = ν(t) η(t),

(the second equality being used later on to obtain the correct F ′).
After computations that are left to the reader these two equalities define η by the differential relation

−η̇(t) = η(t)
p−1
θp−1 ,

and p−1
θp−1 = 1 + 2p

d . Its solution is indeed the negative power function (8), namely η(t) = t−d/(2p).

Notice that ν(t)η(t) = η(t)1+ 2p
d , and thus

ν(t) = η(t)
2p
d =

1
t
. (12)

(Step 4) We have
d
dξF (ξ) = −p

∫∞
0

∫
Rd ν(t)η(t)

(
u− ξη(t)

)p−1

+
dxdt,

≤ −Cξ−θβF (ξ)β

with
1
β

= θ + (1− θ) p

p− 1
= 1 +

1− θ
p− 1

> 1, 0 < β < 1,

and because θ < 1,
0 < θβ < 1.

Therefore the function F (ξ) vanishes in finite ξ.
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(Step 5) It remains to explain why F is finite for some ξ0 > 0, using that, as shown above, ν(t) = 1/t.
When u > 2ξη and for q > p, we have (u−ξη(t))p−q+ < (ξη(t))p−q, hence the Tchebichev type inequality

F (2ξ) ≤
∫ ∞

0

∫
Rd

ν(t)
(ξη(t))q−p

(u− ξη(t))q+ dx dt <∞.

Since we have q − p = 2p
d and using the exponents in (12), we arrive at

ν(t)
(ξη(t))q−p

= 1/ξq−p.

Therefore, for ξ > 0, we have:

F (2ξ) ≤ 1
ξq−p

∫ ∞
0

∫
Rd

(u− ξη(t))q+ dx dt ≤
1

ξq−p

∫ ∞
0

∫
Rd
uq+ dx dt ≤

C

ξq−p
‖(u0)+‖Lp(Rd) <∞

where the last inequality follows by the argument of step 2 choosing η ≡ 1 (then the energy is directly
controled by the initial data in opposition to the case when η(0) = ∞). And the proof is complete.

Note that the estimates depend only on ‖(u0)+‖p. Hence, there exists a universal constant Cp such

that for ū(x, t) = u(x, t)/‖(u0)+‖p, ū(x, t) ≤ Cp t
−d
2p . This allows us to precise (9) as

u(x, t) ≤ Cp ‖(u0)+‖p t
−d
2p .

4 A nonlinear parabolic PDE arising in angiogenesis

As mentioned in the introduction, the Keller-Segel system for chemotaxis has attracted a lot of studies
mostly because solutions may blow-up for large mass. For small intial data global weak solutions exists
(and many settings are possible) and gain of integrability is proved. For instance in [3] the authors
prove, for initial mass below the critical mass, the gain of Lp regularity for all p ∈ (1,∞) when
the problem is set in R2 for the parabolic/elliptic problem. In [8], the parabolic/parabolic case in
dimension larger than 3 is treated and Lp integrability is reached with data just above the scale
invariant exponents. This has been improved in [6] and in [21, 22]. The large time decay as 1/t is also
known in some cases, see [2], for the 2-d parabolic-elliptic Keller-Segel system with small mass.

4.1 Setting the problem

The model reads 

∂
∂tn = ∆n−∇ · [nχ(c)∇c], t > 0, x ∈ Rd,

∂
∂tc = −c n, t > 0, x ∈ Rd,

n(0, x) = n0(x) ≥ 0, c(0, x) = c0(x) ≥ 0, x ∈ Rd.

(13)
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The sensitivity χ(c) is a given positive function on R+, generally chosen as a decreasing function since
sensitivity is lower for higher concentrations of the chemical because of saturation effects.

Solutions to the angiogenesis system satisfy obvious a priori estimates for all t ≥ 0,

n(t) ≥ 0, 0 ≤ c(t, x) ≤ max
x∈Rd

c0(x), (14)

∫
Rd
n(t, x) = M0 :=

∫
Rd
n0(x). (15)

Moreover, when χ(c) is such that

µ :=
1
2

inf
c≥0
{c

χ′(c)
χ(c)

+ 1} > 0, (16)

system (13) satisfies an energy inequality given by
d
dtE(t) ≤ −

∫
Rd n

[
|∇ ln(n)|2 + µ|∇Φ(c)|2

]
≤ 0 ,

E(t) :=
∫

Ω[1
2 |∇Φ(c)|2 + n ln(n)] and Φ′(c) =

√
χ
c .

(17)

With these estimates the existence of weak solutions has been proved in [9].
Here, we are more interested in strong solutions in Lp (see [24] for Hs spaces). It is proved in [10]

that there are strong solution in Lp, for appropriate p ∈ [1,∞) for ‖n0‖
L
d
2 (Rd)

small enough, and in

[11] that they are bounded in L∞ for an initial data in L∞. The regularizing effect however is open
and this is what we want to prove here.

In the direction of strong solutions, another estimate can be proved

‖n(t)‖
L
d
2 (Rd)

≤ ‖n0‖
L
d
2 (Rd)

for ‖n0‖
L
d
2 (Rd)

≤ K(d, ‖c0‖∞) small enough. (18)

This last estimate, borrowed from [10], requires an elementary computation that will be useful later,
in a more general form, and we present it now. It uses the following Nash-type inequality valid for
p > 0, d ≥ 2: ∫

Rd
np+1 ≤ C(d, p)‖∇np/2‖2L2(Rd) ‖n‖L d2 (Rd)

. (19)

For d > 2, the proof uses the Sobolev inequality:∫
Rd
np+1 ≤ ‖np/2‖2

L
2d
d−2 (Rd)

‖n‖
L
d
2 (Rd)

≤ C(d)‖∇np/2‖2L2(Rd) ‖n‖L d2 (Rd)
.

For d = 2, we get the result in the following way:∫
R2 n

p+1 ≤ ‖∇n
p+1

2 ‖2L1(R2) ≤ C(p)‖n1/2∇np/2‖2L1(R2)

≤ C(p)‖∇np/2‖2L2(R2) ‖n‖L1(R2).
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We define φ by
φ′(c) = φ(c)χ(c) c > 0, φ(0) = 1,

and compute, following [10], for any dimension d ≥ 2

d
dt

∫
Rd

(
n
φ(c) −K

)p
+
φ(c) = −4p−1

p

∫
Rd φ(c)|∇( n

φ(c) −K)p/2+ |2

+(p− 1)
∫

Rd φ
2(c)χ(c)c

(
n
φ(c) −K

)p+1

+

+(2p− 1)K
∫

Rd φ
2(c)χ(c)c

(
n
φ(c) −K

)p
+

+ pK2
∫

Rd φ
2(c)χ(c)c

(
n
φ(c) −K

)p−1

+
.

(20)

Therefore, we also have

d
dt

∫
Rd

(
n
φ(c) −K

)p
+
φ(c) = −4p−1

p

[∫
Rd φ(c)|∇( n

φ(c) −K)p/2+ |2 −
p
42φ

2(c)χ(c)c
(

n
φ(c) −K

)p+1

+

]

+(2p− 1)K
∫

Rd φ
2(c)χ(c)c

(
n
φ(c) −K

)p
+

+ pK2
∫

Rd φ
2(c)χ(c)c

(
n
φ(c) −K

)p−1

+
.

From this equality, we deduce two useful inequalities.

On the one hand, with K = 0, the Nash inequality (19) gives

d
dt

∫
Rd

(
n
φ(c)

)p
φ(c) = −4p−1

p

[∫
Rd φ(c)|∇( n

φ(c))p/2|2 − p
42φ

2(c)χ(c)c
(

n
φ(c)

)p+1
]

≤ 4p−1
p

∫
Rd |∇( n

φ(c))p/2|2
[
1− C(d, p, ‖c‖∞)

∥∥ n
φ(c)

∥∥
d/2

]
,

(21)

which, with p = d/2, explains the a priori estimate (18). Also we conclude (with a stronger smallness
assumption if needed)

2
p− 1
p

∫ T

0

∫
Rd
φ(c)|∇(

n

φ(c)
)p/2|2 +

∫
Rd

(
n(T )
φ(c(T ))

)p
φ(c(T )) ≤

∫
Rd

(
n0

φ(c0)

)p
φ(c0). (22)

On the other hand, still under this smallness condition in (18), we have for any max{1, d2 − 1} ≤
p <∞

d
dt

∫
Rd

(
n
φ(c) −K

)p
+
φ(c) ≤ −2p−1

p

∫
Rd φ(c)|∇( n

φ(c) −K)p/2+ |2

+(2p− 1)K
∫

Rd φ
2(c)χ(c)c

(
n
φ(c) −K

)p
+

+ pK2
∫

Rd φ
2(c)χ(c)c

(
n
φ(c) −K

)p−1

+
.

(23)
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4.2 Regularizing effects in L∞

It is our purpose to prove here our main result, that is the

Theorem 4.1 For c0 ∈ L∞(Rd) and ‖n0‖Ld/2(Rd) ≤ C(d, ‖c0‖∞) small enough, the smooth solutions
to (13) satisfy for any T > 0

1. If n0 ∈ L∞ then n ∈ L∞
(
(0, T )× Rd

)
,

2. if n0 ∈ Lp(Rd) with p > d+2
2 , then ‖n(t)‖L∞(Rd) ≤ C(T )t−

d
2p , 0 < t ≤ T, (the rate of the heat

equation),

3. if n0 ∈ Lp(Rd) with p > d(d+4)
2(d+2) , then ‖n(t)‖L∞(Rd) ≤

C(T )
t , 0 < t ≤ T, (a rate weaker than for the

heat equation),

4. and finally if we have merely n0 ∈ Ld/2(Rd), then ‖n(t)‖L∞(Rd) ≤
C(d,‖c0‖∞)

t for t > 0.

In particular, this theorem implies some kind of remarkable regularizing effect on c even though it
is driven by an ODE because such integrability of n in L∞ is not true for all bounded drifts c(t, x).

Also, the quadratic term in the model does not seem to have an effect on the regularizing effects as
this is the case for the long time decay [29, 8].

The first result is from [11] and we do not prove it again.

Proof (Second estimate) We follow the case of the heat equation, and in the different steps we consider
the additional terms coming from the energy inequality. One of the consequences is that we have to
work on a finite time interval (0, T ).

(Step 1) We define, with C = 2p−1
p

φmax
φmin

,

U(ξ) = sup
0≤t≤T

∫
Rd

(
n

φ(c)
− ξη(t)

)p
+

+ C

∫ T

0

∫
Rd
|∇(

n

φ(c)
− ξη(t))p/2+ |2

and we first deduce after integrating (23) that, still under the condition η(0) > ‖n0‖∞

φminU(ξ) ≤ sup0≤t≤T
∫

Rd
(

n
φ(c) − ξη(t)

)p
+
φ(c) + 2p−1

p

∫ T
0

∫
Rd φ(c)|∇( n

φ(c) − ξη(t))p/2+ |2

≤ −ξ
∫ T

0 η̇(t)
∫

Rd
(

n
φ(c) − ξη(t)

)p−1

+
φ(c) + (2p− 1)

∫ T
0 ξη(t)

∫
Rd φ

2(c)χ(c)c
(

n
φ(c) − ξη(t)

)p
+

+p
∫ T

0 (ξη(t))2
∫

Rd φ
2(c)χ(c)c

(
n
φ(c) − ξη(t)

)p−1

+
.

(24)

10



(Step 2) On the other hand the Sobolev inequality still gives, as in (10) for the linear case,(∫ T

0

∫
Rd

( n

φ(c)
− ξη(t)

)q
+
dxdt

)p/q
≤ CU(ξ), q = p

d+ 2
d

. (25)

(Step 3) We introduce again a weight ν(t) to be determined later on, and define

F (ξ) =
∫ T

0

∫
Rd
ν(t)

( n

φ(c)
− ξη(t)

)p
+
dxdt.

We get

F (ξ)1/p ≤
(∫ T

0

∫
Rd ν(t)

p−1
p(1−θ)

(
n
φ(c) − ξη(t)

)p−1

+
dxdt

)(1−θ)/(p−1)

×
(∫ T

0

∫
Rd
(

n
φ(c) − ξη(t)

)q
+
dxdt

)θ/q
or equivalently, using (25),

F (ξ)1/p ≤ [U(ξ)]θ/p
(∫ T

0

∫
Rd
ν(t)

p−1
p(1−θ)

( n

φ(c)
− ξη(t)

)p−1

+
dxdt

)(1−θ)/(p−1)

, (26)

still with
θ =

d+ 2
d+ 2p

.

At this stage, we impose that there is a constant C(T ) (for this it might be necessary to work with T
finite):  ν(t)

p−1
p(1−θ) + |η̇(t)| ≤ C(T )ν(t) η(t),

η(t) ≤ C(T )ν(t), η̇(t) ≤ 0.
(27)

We can take for instance (but later another choice is done)

ν(t) =
1
t
, η(t) = t

− d
2p , p ≥ d/2, (28)

with C(T ) = T
1− d

2p . In the case at hand, because p−1
p(1−θ) = 1 + d

2p , the constraint T <∞ only comes
from the necessity to fulfill the second line in (27).

Then, we can write (24) as

U(ξ) ≤ Cξ
(
− F ′(ξ)

)
+ CξF (ξ) + Cξ2

(
− F ′(ξ)

)
, (29)

and we can write (26) as
F (ξ) ≤ [U(ξ)]θ

(
−F ′(ξ)

)(1−θ)p/(p−1)
. (30)
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(Step 4) Then we combine (29) and (30) to obtain with

p′ =
p

p− 1
,

F (ξ)1/θ ≤ C(−F ′(ξ))
(1−θ)p′

θ
[
ξ(−F ′(ξ)) + ξF (ξ) + ξ2(−F ′(ξ))

]
,

and because we only consider this differential inequality for ξ ≥ ξ0 > 0,

F (ξ)1/θ ≤ C
(
− F ′(ξ)

) (1−θ)p′
θ

[
ξF (ξ) + ξ2(−F ′(ξ))

]
.

And furthermore, still with
1
β

= 1 +
1− θ
p− 1

> 1, 0 < β < 1,

we have the differential inequality

1 ≤ C
(
−F ′(ξ)
F (ξ)β

) (1−θ)p′
θ

[
ξF (ξ)1−β + ξ2−F ′(ξ)

F (ξ)β

]
.

We may use G(ξ) = F (ξ)1−β instead and this reads

1 ≤ C
(
−G′(ξ)

) (1−θ)p′
θ

[
ξG(ξ) + ξ2(−G′(ξ))

]
,

ξ2
(
−G′(ξ)

) 1
βθ + ξG(ξ)(−G′(ξ))

1
βθ
−1 ≥ c,

ξ2βθ
(
−G′(ξ)

)
+ ξβθG(ξ)βθ(−G′(ξ))1−βθ ≥ c > 0.

which is equivalent to
G′(ξ) ≤ −cmin

(
ξ−2βθ, [ξG(ξ)]

βθ
1−βθ

)
. (31)

We recall that we always have 0 < βθ < 1. The term in ξG(ξ) is bad in the right hand side of (31)
and we have to assume that p is such that

2βθ < 1 ⇐⇒ 1
θβ

= 1 +
2p
d+ 2

> 2.

This condition also gives the possible exponents in our proof

p >
d+ 2

2
. (32)

Then we may built supersolutions of the ODE (31)

Ḡ(ξ) = A−Bξ1−2βθ, B > 0 small enough.

We choose A large enough so as to impose G(ξ0) < A − Bξ1−2βθ
0 (see step 5). Therefore G(ξ) ≤

A−Bξ1−2βθ and thus G (or equivalently F ) vanishes for a finite ξ1.

12



(Step 5) We have G(ξ0) < ∞ for some ξ0 by the Tchebichev argument of Section 3 which holds
true here because we have handled the same weights η and ν. The proof of the second inequality is
completed.

Proof (Third estimate) We use the same proof. But, in order to extend the range of validity for initial
integrability, we choose in (27) the weights

η(t) = ν(t) = 1/t,

and the constant C(T ) comes now fom the first inequality in (27). We choose also p > (d + 2)/2
according to (32) so that the above proof holds true. But we modify Step 5 as follows.

(Step 5-modified) By a Tchebichev type inequality we have

F (2ξ) ≤
∫ ∞

0

∫
Rd

ν(t)
(ξη(t))q̄−p

(n− ξη(t))q̄+ dx dt <∞.

We choose q̄ = p+ 1 so that the exponents in t cancel and we arrive at:

F (2ξ) ≤ 1
ξ

∫ ∞
0

∫
Rd

(n− ξη(t))q̄+ dx dt ≤
1
ξ

∫ ∞
0

∫
Rd
nq̄ dx dt ≤ C

ξ
‖n0‖Lp̄(Rd) <∞

with
p̄ = q̄

d

d+ 2
= (p+ 1)

d

d+ 2
<
d+ 4

2
d

d+ 2
,

by the Sobolev injection argument of step 2 of Section 3 and using the a priori bound (22) (with p̄ in
place of p).

And the proof is complete.

Proof (Fourth estimate) We use that the norms ‖n0‖Ld/2 and ‖c0‖L∞ are scale invariant. Let us first
show the estimate for T = 2. Let ‖n0‖Ld/2 be small enough. Then from the a priori bound (22) with
p = d/2 and still with the Sobolev inequality as in (10) for the linear case, we have∫ 1

0

∫
Rd
n
d+2

2 dx dt ≤ C.

Therefore there is a t0 ≤ 1 for which
∫
n(t0)

d+2
2 dx ≤ C, and the decay property in (22) gives∫

Rd
n(1)

d+2
2 dx ≤ C.

Since
d+ 2

2
>
d

2
d+ 4
d+ 2

,
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from the third decay result, departing from 1 we conclude that for 1 < t

‖n(t)‖L∞(Rd) ≤ C
(∫

Rd
n(1)

d+2
2 dx

)
1

t− 1
.

In particular, for t = 2
‖n(2)‖L∞(Rd) ≤ C̃.

Note that the constant C̃ depends only on ‖n0‖Ld/2 and ‖c0‖L∞ .

Consider now
nR(t, x) = R2n(R2t, Rx), cR(t, x) = c(R2t, Rx).

The scales have been chosen because (nR, cR) verifies the same equation (1) with initial value

nR(0, x) = R2n0(Rx), cR(0, x) = c0(Rx).

And the critical exponents exponents are such that

‖n0
R‖Ld/2 = ‖n0‖Ld/2 , ‖c0

R‖L∞ = ‖c0‖L∞ .

We can then obtain at t = 2 the same inequality with the same constant C̃:

‖nR(2)‖Ld/2 ≤ C̃,

which leads to

‖n(2R2)‖L∞ ≤
2C̃
2R2

.

Since the estimate is valid for any R > 0, the fourth result follows.
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