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Effective Generation of Dynamically Balanced
Locomotion with Multiple Non-coplanar
Contacts

Nicolas Perrin, Darwin Lau and Vincent Padois

Abstract Studies of computationally and analytically convenient approximations
of rigid body dynamics have brought valuable insight into the field of humanoid
robotics. Additionally, they facilitate the design of effective walking pattern genera-
tors. Going further than the classical Zero Moment Point-based methods, this paper
presents two simple and novel approaches to solve for 3D locomotion with multiple
non-coplanar contacts. Both formulations use model predictive control to generate
dynamically balanced trajectories with no restrictions on the center of mass height
trajectory. The first formulation treats the balance criterion as an objective function,
and solves the control problem using a sequence of alternating convex quadratic
programs. The second formulation considers the criterion as constraints, and solves
a succession of convex quadratically constrained quadratic programs.

1 Introduction

Locomotion is a challenging task for humanoid robots, even within completely
known environments. Although the dynamics of multibody systems are well under-
stood, direct approaches to resolve the motion of all degrees of freedom for locomo-
tion have remained computationally intractable due to the large number of degrees
of freedom and nonlinear behaviour. To generate dynamically balanced locomotion
trajectories efficiently, current methods are typically based on simplified models of
the robot dynamics.

One of the most widespread model is the Inverted Pendulum Model (IPM) [10],
where the mass of the robot is assumed to be concentrated at its center of mass
(CoM). Although more accurate models are sometimes required [11], the simple
IPM is suitable for many situations where the rotational inertial effects of the robot
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arms, legs and torso are negligible or can compensate for each other. An example of
such a scenario includes walking at a moderately fast pace.

One of the main properties of multi-contact locomotion is that the robot’s CoM
acceleration depends only on the contact forces with the environment. Hence, an
important objective for the generation of locomotion is to design a CoM trajectory
that is dynamically balanced at any point in time. Dynamically balanced refers to
the existence of contact forces that can produce the desired CoM acceleration while
respecting the contact constraints, such as being within the friction cones.

When all the contacts are coplanar, a point of particular interest, sometimes called
the Zero Moment Point (ZMP) [17], can be defined. Although this name has led to
confusion about its physical nature [3], the term ZMP will be used in the remainder
of the work. A system is considered dynamically balanced if the ZMP lies within
the support region, i.e. the 2D convex hull of the contact points. In the IPM, the re-
lationship between the CoM and ZMP dynamics is defined by nonlinear differential
equations. However, if the vertical displacements of the CoM are set in advance, the
relationship can be decoupled and expressed as linear differential equations. This
substantially simplifies the problem into one that can be more efficiently and easily
implemented for locomotion trajectory generation and gait control.

The trajectory generation problem has been studied through analytical approaches
[4], and more recently, using convex optimization with constraints on the ZMP in
discrete time [7, 19, 20, 6]. The efficiency of convex optimization solvers allows
them to be used within model predictive control (MPC) schemes and with the po-
tential of real-time implementation for reactive walking. However, the ZMP+MPC
approach suffers from two main drawbacks: 1) the trajectory of the CoM height (z-
direction) must be known or fixed in advance, and 2) the contact points must always
be coplanar, making this approach unsuitable for walking in complex unstructured
environments or if the arms are to also be used. Due to these two restrictions, the
ZMP+MPC approach can be regarded as a 2D CoM planner that operates in the
horizontal xy-plane only.

Several studies have looked into extending the concept of ZMP into 3D condi-
tions, such as GZMP [5] and 3DZMP [9], to handle non-coplanar contact points.
These criteria have been used in control algorithms to maintain the dynamical bal-
ance of a humanoid robot interacting with its environment. However, no locomotion
trajectory generation algorithm has been designed based on these notions. In [8], a
more general criterion than the ZMP was proposed to evaluate the balance of con-
tacts during the motion of a legged robot. This criterion was used within a preview
control algorithm with additional restrictions, for example, the vertical motion of the
CoM must be approximately constant. Furthermore, a preliminary phase is needed
to plan the inertia and gravity wrenches appropriately, which is a difficult problem.

In this paper, two simple and novel MPC approaches to solve for 3D locomotion
with multiple non-coplanar contacts are presented. The 3D condition for dynami-
cally balanced gait allows for non-coplanar multiple contacts and no restrictions on
the CoM height trajectory. Using the proposed 3D dynamically balanced criterion,
the first MPC formulation treats the criterion as an objective function, where the
resulting non-convex MPC problem is solved using a sequence of alternating (con-
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vex) quadratic programs (AQP). The second formulation considers the criterion as
non-convex constraints to the problem, and is solved through a succession of convex
QCQPs. The results for simple locomotion scenarios show the promise in using the
proposed 3D condition to generate the CoM trajectory within the control framework
of robots with multiple contacts.

Although generalizations, such as allowing for multiple contacts, non-coplanar
contacts and not predetermining height trajectory, inherently increase the problem
complexity, care has been taken to maintain balance between the computational ef-
ficiency and limitations of the model. Indeed, our approach is more general than
traditional simplified methods based on the IPM or ZMP, but thanks to our main
assumption, namely, that the CoM lies inside all the contact friction cones, the num-
ber of variables that have to be taken into account is much smaller than with direct
methods, such as [15]. The feature of the proposed MPC schemes is that they can
be effectively and efficiently solved through a succession of convex optimization
problems, when the problem formulation is of particular forms, such as bilinear
problems or non-convex QCQPs.

The remainder of the paper is organised as follows: Section 2 formulates the 3D
condition for dynamically balance. The two MPC formulations using the 3D condi-
tion as an objective or as constraints are formulated in Sections 3 and 4, respectively.
Section 5 presents a brief discussion on the two approaches. Finally, Section 6 con-
cludes the paper and presents areas of future work.

2 Conditions for Dynamically Balanced Locomotion in 3D

Expressing wrenches with respect to the CoM of the robot x, the Newton-Euler
equations of motion for a multibody robot system in a fixed world frame can be
written as

Wgravity
x +Wcontact

x =

[
L̇

Mẍ

]
, (1)

where Wgravity
x is the gravity wrench in 6D vector notation [2], Wcontact

x the sum of
the contact wrenches, L is the angular momentum of the whole robot with respect
to its CoM, and M the total mass of the robot. The gravity wrench is equal to the
vector

[
0T MgT

]T , where g is the gravity vector, and

Wcontact
x =

N

∑
j

[
(c j−x)× f j

f j

]
, (2)

where the c j and f j are the location and force of contact j, respectively, and N is the
total number of contacts. Substituting (2) into (1) results in

∑
j

[
(c j−x)× f j

f j

]
=

[
L̇

M(ẍ−g)

]
. (3)
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The system can be regarded as dynamically balanced if (3) is satisfied. The goal
of the problem of CoM trajectory generation is to compute ẍ(t) such that the dy-
namic wrench, the right hand side term of (3), can be compensated by the sum of
contact force wrenches. It is usually assumed that the contact forces belong to a
cone (friction cone) spanning from the contact point.

Generally, it is not trivial to compute the set, or even a reasonable subset, of the
dynamic wrenches that can be compensated by a given set of contact cones [16].
However, by assuming that all contact cones contain the CoM x, as shown in Fig. 1,
it is possible to choose the force of contact j to be

f j = α j(x− c j) ,α j ≥ 0 . (4)

This assumption is equivalent to enforcing the constraint x−c j ∈ Fj, where Fj is the
friction cone for the contact point j. Given the contact point c j, normal vector to the
contact surface n̂ j and the coefficient of friction µ j, this constraint can be expressed
as a second order cone constraint or approximated by a set of linear constraints.

Fig. 1 All the contact cones contain the direction towards the position of the robot CoM x. Choos-
ing the force of contact j equal to α j(c j−x), α j ≥ 0, yields: M(g− ẍ) = ∑ j α j(c j−x), α j ≥ 0.

By this selection, substituting (4) into the criterion for dynamic balance (3) re-
sults in [

0
∑α j(x− c j)

]
=

[
L̇

M(ẍ−g)

]
. (5)

From (5), the system is dynamically balanced if:

1. The angular momentum L̇ of the whole robot with respect to its CoM is negligi-
ble.

2. M(g− ẍ) can be expressed by a positive linear combination of the vectors c j−
x , j = 1, . . . ,N.

It is worth noting that the proposed condition (5) holds in 3D without the restric-
tion that contacts are coplanar. Furthermore, although the assumption x− c j ∈ Fj
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limits range of scenarios in which the simplified conditions for dynamic balance (5)
can be used, it is important to note that the restrictions are less limited and can be
applied in a larger range of scenarios compared with Zero Moment Point (ZMP)
conditions.

3 Model Predictive Control with Dynamically Balancing
Objective

3.1 Problem Formulation: Non-Convex Optimization Problem

The aim of this problem is to determine the CoM trajectory for the locomotion of
a multi-limbed robot for a given sequence of contacts over a finite time horizon.
Although the number of contacts between the robot and the environment can theo-
retically be infinite, without loss of generality it can be supposed that only a finite
number of points N of the robot can be in contact with the environment. For exam-
ple, the contact points for a rectangular foot can be represented by the 4 vertices
of the foot sole. The positions of these time-varying contact points can be denoted
by c1(t),c2(t), . . . ,cN(t). A binary variable κ j(t) ∈ {0,1} can be defined to denote
whether c j(t) is in contact (κ j(t) = 1) or not in contact (κ j(t) = 0) with the environ-
ment at time t. In this work, the contact trajectory c j(t) and κ j(t) are predetermined.

In this proposed model predictive control (MPC) scheme, the decision variables
are the CoM positions x(t) and the contact force multipliers α j(t) ∀ j ∈ {1, . . . ,N},
over the finite time horizon T , where t ∈ [t0, t0 + T ]. Discretizing the horizon
at a time step of δ t results in K discrete time instances, where T = Kδ t and
ti = t0 + i · δ t. Given the contact trajectory information c j(t) ∀ j ∈ {1, . . . ,N} and
κ j(t) ∀ j ∈ {1, . . . ,N}, the objective is to satisfy the translational components of (5)
by minimising

J1 =
K

∑
i=1

∥∥∥∥∥M(g− ẍ(ti))−
N

∑
j

κ j(ti)α j(ti)(c j(ti)−x(ti))

∥∥∥∥∥
2

.

The constraints for this problem are:

• Initial/current CoM position x(t0) = x0
• Initial/current CoM velocity ẋ(t0) = ẋ0
• Final CoM position at the end of the horizon x(tK) = x f
• Max acceleration ‖ẍ(ti)‖∞

≤ amax, i = 0, . . . ,K−1

Note that any constraints on the CoM velocity ẋ and acceleration ẍ can be expressed
with respect to x by the linear relationships
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ẋ(ti) =
x(ti)−x(ti−1)

δ t
, i = 1, . . . ,K (6)

ẍ(ti) =
ẋ(ti+1)− ẋ(ti)

δ t
, i = 0, . . . ,K−1 . (7)

As a result, all constraints are either linear equality or inequality constraints with
respect to x. Thus, the MPC optimization problem to determine the CoM trajectory
over the finite time horizon can be expressed as

min
(x(ti))i,(α j(ti))i, j

J1

(
(x(ti))i ,(α j(ti))i, j

)
s.t. ‖ẍ(ti)‖∞

≤ amax, i = 0, . . . ,K−1
x(t0) = x0

ẋ(t0) = ẋ0

x(tK) = x f . (8)

Remark: as it is presented here, to implement the approach as a model predictive
controller would require measuring the CoM velocity (ẋ0), which is not always easy.
If the contact forces are accessible, one could estimate their total wrench and use it
to obtain an approximation of M(g− ẍ), which could potentially be used to make
the approach more robust.

3.2 An algorithm exploiting the objective function structure

On a computational level, the objective function J1 is non-convex and it is therefore
difficult to obtain the global optimum. Finding a local minimum could be relatively
quick and provide good results, but in the next section we propose another approach
that exploits the form of the objective function. The alternating convex optimization
approach is inspired by [12], where successful results for a different application are
obtained by using an alternating sequence of convex QPs (AQPs) instead of trying
to solve head-on an optimization problem with a bilinear objective function. The
structure of function J1 can be expressed as

J1 = ∑
i

∥∥εi (x(ti),(α j(ti)) j)‖2 , (9)

with

εi = M(g− ẍ(ti))−
N

∑
j

κ j(ti)α j(ti)(c j(ti)−x(ti)).

The functions εi are bilinear in the variables x(ti) and α j(ti). Therefore, if x(ti)
are fixed, the optimization problem (8) becomes a convex QP that can be efficiently
solved. Similarly, if the α j(ti) variables are fixed, we obtain a convex QP in the x(ti)
variables. This property can be used to alternatively optimize the x(ti) and α j(ti)
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variables, using the solution of each step as the fixed variables of the next step.
This ensures that the objective J1 decreases at each iteration of the algorithm until it
converges.

For the first step, an initial guess was made for the CoM trajectory that is consis-
tent with the constraints from (8), and the α j(ti) variables are optimized. The most
direct motion from x0 to x f is often a natural candidate for this initial guess, so in
practice this method does not require any tuning at all.

3.3 Results

The RobOptim [14] framework was used to illustrate the use of the proposed MPC
formulation (8) and alternating quadratic programs that exploit the bilinear form
(9) on CoM generation for locomotion. RobOptim provides a convenient interface
to try various optimization tools. One interesting aspect of the formulation of the
proposed MPC is that the matrices describing the constraints are very sparse, with
O(m) non-zero elements where m is the total number of variables. Thus, we chose
the IPOPT optimizer [18] that can exploit matrix sparsity. Three different scenarios
are simulated and presented:

1. 3 step walk with two foot supports (coplanar contacts);
2. 3 step walk with two foot supports and one hand support (non-coplanar contacts);
3. Jump-step with flight phase.

The 4.5 s trajectory for scenario 1 can be defined by the following sequence as
shown in Fig. 2:

• 0≤ t < 0.6 s: Robot initially begins in double support
• 0.6≤ t ≤ 1.2 s: Step 1 moving the left foot
• 1.2 < t < 1.9 s: Double support phase
• 1.9≤ t ≤ 2.5 s: Step 2 moving the right foot
• 2.5 < t < 3.2 s: Double support phase
• 3.2≤ t ≤ 3.8 s: Step 3 moving the left foot
• 3.8 < t ≤ 4.5 s: Double support phase

With a time horizon of 4.5 s and δ t = 0.1 s, the MPC scheme consists of 45
discrete steps. Without loss of generality, it should be noted that the MPC in this
setup solves for the entire trajectory, where in practice the time horizon would be
shorter to achieve better computational performance. The dimensions of the feet
10.45 cm × 28.3 cm and the total mass 36.66 kg correspond to the Romeo robot
[1]. At t = 0 s and t = 4.5 s, the CoM is set to be in the middle between the feet at
a height of 0.6 m, x(0) = [0.14 0 0.6]T and x(4.5) = [0.85 0 0.6]T , respectively.
The initial guess for the CoM trajectory follows a straight line from its initial to
its final position. Fig. 2 shows the CoM motion generated after two steps of the
algorithm (i.e. one optimization of the α j(ti) variables and then one optimization of
the CoM trajectory).
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Fig. 2 The resulting trajectory from the MPC scheme (8) for scenario 1. In blue, the horizontal
CoM trajectory produced by our algorithm in 95 ms. In red, the projected ZMP trajectory (10).

Fig. 2 shows the resulting CoM trajectory (in blue) and the projection (in red)

xzmp = λzmp(x+M(g− ẍ)), (10)

where λzmp > 0 is a scaling factor such that zzmp = 0. The projected point (10) is
equivalent to the ZMP point for the scenario 1 in which all contact points are always
coplanar. It can be observed that the projected ZMP lies within the foot during sin-
gle support phases. In this scenario, the results are similar to that of the ZMP+MPC
approach, since all contacts are coplanar on the ground plane. For this scenario, the
optimization problem (8) with horizon of K steps consists of 11K decision variables,
comprised of 3 for the CoM position and 8 for the two contact supports (four contact
points per support) at each time step, and 9 + K constraints from (8). The trajectory
was computed in 95 ms (on a 2.40GHz Intel(R) Core(TM) i7-4700MQ CPU) after
solving two alternations of the AQP, and hence 4 convex QPs. Executing more al-
ternations of the algorithm showed that the cost J1 quickly reached small values, for
example, more than 1000 times smaller than the initial value after 4 optimizations.
Furthermore, it was observed that the algorithm had almost converged after the 2
first optimizations.

In the second scenario, an additional contact corresponding to the right hand of
the robot on a wall is considered. The contact point is at a height of 0.6 m, and
activated only during the second step. This example demonstrates the ability of the
proposed 3D condition and MPC algorithm to handle non-coplanar contacts. The
resulting trajectory in Fig. 3 shows how the proposed algorithm can handle this
situation and generated a different CoM trajectory. It could be observed from the
results that the additional hand contact point enabled the robot to avoid the sway
motion to the left.

Finally, the third scenario illustrates the ability of the algorithm to determine the
CoM height without restrictions unlike the classical ZMP+MPC approach. The steps
were replaced by one jump defined by the following sequence of actions: at t = 0.6 s
the left foot leaves the ground, and at t = 2.0 s the right foot leaves the ground. After
a flight phase of 0.4 s, the left foot lands at t = 2.4 s, and then the right foot lands at
t = 3.8 s. Remark: in this scenario the amax bound must be at least equal to the norm
of the gravitational acceleration. Fig. 4 shows the CoM trajectory produced after 2
optimizations. This example clearly shows the benefits in relaxing the fixed height
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Fig. 3 The resulting trajectory from the MPC scheme (8) for scenario 2 with hand support. In
blue, the horizontal CoM trajectory produced after 2 steps of the algorithm (in 96 ms). In purple,
the trajectory produced after 6 steps of the algorithm (in 412 ms). These trajectories are almost
exactly the same, which shows that the convergence is fast.

trajectory from the ZMP+MPC approach, such that the CoM trajectory generation
is able to produce a jump motion in the z-direction.

Fig. 4 On the left: the horizontal CoM trajectory generated (in 176 ms) for the jump scenario. On
the right: the evolution of the CoM coordinates during the flight phase.

4 Model Predictive Control with Dynamically Balancing
Constraints

4.1 Problem Formulation: Non-Convex Quadratically Constrained
Quadratic Program

With the same aim of determining the CoM trajectory as Section 3, the problem in
this section will be formulated by considering the dynamically balanced condition
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(5) as constraints over the time horizon. Furthermore, the objective to minimise is
the tracking error for a reference CoM trajectory xr(t). The reference CoM trajec-
tory is pre-planned based on the desired motion. In this MPC problem, the decision
variables are the CoM jerk vectors

...x (ti), ∀i ∈ {1, . . . ,K}. The convex objective of
the problem is to minimise

J2 =
K

∑
i=1

Q1 ‖x(ti)−xr(ti)‖2 +Q2 ‖
...x (ti)‖2 ,

where Q1 and Q2 are the relative weights between the tracking and jerk terms, re-
spectively. Note that the relationship between the CoM jerk

...x and the CoM position
x, velocity ẋ and acceleration ẍ is linear [19] in the formx(ti+1)

ẋ(ti+1)
ẍ(ti+1)

= A

x(ti)
ẋ(ti)
ẍ(ti)

+B
...x (ti) .

As a result, the objective and all constraints can be expressed with respect to the
CoM jerk. As presented in Section 2, the geometrical meaning of the constraint

∑α j(c j−x) = M(g− ẍ) ,α j ≥ 0 (11)

is that the vector M(g− ẍ) must lie within the positive cone of the vectors (c j −
x) ∀ j ∈ {1, . . . ,N}. Such constraints will be derived in the following for the case of
one and two supports in contact.

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this 
box.: AAAAAAAA 
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(b) Double support contact

Fig. 5 The constraints required to achieve dynamic balance for: (a) when one support is in contact
with the environment κL = 1,κR = 0 and (b) when two supports are in contact κL = 1,κR = 1.

As shown in Fig. 5(a), when the system is in single support it will be assumed
that there are four contact points. The position of the vertices for the rectangular
contact surface relative to the center of the contact c j can be represented by a1, a2,
a3 and a4. For the single support, the vector M(g− ẍ) is inside the cone produced
by the vectors (c j + a1− x,c j + a2− x,c j + a3− x,c j + a4− x) = (w1,w2,w3,w4)
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if the following triple products are positive:

w1×w2 · (g− ẍ)≥ 0, w2×w3 · (g− ẍ) ≥ 0
w3×w4 · (g− ẍ)≥ 0, w4×w1 · (g− ẍ) ≥ 0 . (12)

For the case of double support contacts, the expression of the convex cone would
be non-trivial if each support was assumed to consist of 4 contact points. This is be-
cause the convex cone would be dependent on the locations of each support. Further-
more, this would increase the number of surfaces of the convex cone for the vector
M(g− ẍ) to be checked, hence increasing the number of constraints. However, by
assuming that each contact support only has two contact points, at the top at and bot-
tom ab, then the resulting convex cone shown in Fig. 5(b) only consists of four sur-
faces and is a strict subset of the 4 contact point convex hull regardless of the support
location. For the double support, the vector M(g− ẍ) is inside the cone produced
by the vectors (cL +at −x,cL +ab−x,cR +ab−x,cR +at −x) = (w1,w2,w3,w4)
as with the conditions in (12). In a similar manner, constraint equations for extra
scenarios with additional contacts could be considered. For both mathematical and
practical considerations, it will be assumed that contacts do not overlap, such that
the contact points in Figure 5(b) can form a convex cone.

It can be observed that the constraints (12) for both single and double support are
non-convex quadratic inequality constraints if the contact trajectories are known. As
a result, the MPC optimization problem to determine the CoM trajectory over the
finite time horizon can be expressed as

min
(
...x (ti))i

K

∑
i=1

Q1 ‖x(ti)−xr(ti)‖2 +Q2 ‖
...x (ti)‖2

s.t. (12) for κ j = 1, κa = 0 ∀a 6= j

(12) for κL = 1,κR = 1 . (13)

The optimization problem (13) is a non-convex quadratically constrained quadratic
program (QCQP) with a convex objective function.

4.2 Feasible Point Pursuit Successive Convex Approximation

On a computational level, the objective function J2 has non-convex constraints and
therefore it is non-trivial to obtain a feasible solution, let alone the global optimum.
The feasible-point-pursuit successive convex approximation (FPP-SCA) [13] is an
effective approach that solves the non-convex QCQP as a succession of QP convex
approximations. Considering the non-convex QCQP of the standard form with the
decision variable u ∈ Rn
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min
u

uT A0u+qT
0 u

s.t. uT Aku+qT
k u≤ bk, k = 1, . . . ,L , (14)

where A0 ∈ Rn×n is a positive semidefinite matrix, if any of Ak ∈ Rn×n from the L
constraints are not positive semidefinite, then (14) is non-convex and the problem
is NP-hard in general. By performing a linear restriction about any point zi, the
FPP-SCA approach aims to solve the following problem

min
u,s

uT A0u+qT
0 u+λ ∑

k
s2

k

s.t. uT A+
k u+(2zT

i A−k +qT
k )u≤ bk + zT

i A−k zi + sk ,

sk ≥ 0, k = 1, . . . ,L (15)

where A+
k and A−k are the positive semidefinite and negative semidefinite matrices

from the decomposition Ak = A+
k +A−k . The terms sk are slack variables that repre-

sent the violation of the k-th quadratic constraint and λ � 1 is a constant that gives
priority to minimise the constraint violation. The vector zi ∈ Rn is the initial guess
vector at iteration i. In the FPP-SCA approach, the convex QCQP (15) is repeated,
where the variable zi+1 is set as the optimal solution u∗i at iteration i.

By using the FPP-SCA approach to solve the MPC problem (13) with horizon
of K steps, at each iteration of FPP-SCA the convex QCQP problem consists of 7K
decision variables, comprised of 3 for the CoM jerk and 4 constraint slack variables
at each time step, and 4K quadratic constraints (12) at each time step. The initial
guess z0 can be any arbitrary vector, and in the simulations the zero vector was
chosen. By solving a succession of (15), it was shown in [13] and in the results of
Section 4.3 that the algorithm converges within a few successions.

4.3 Results

To demonstrate the MPC formulation (13), the CoM jerk trajectories were deter-
mined using the FPP-SCA for the three following scenarios: scenario 1 from Sec-
tion 3.3, scenario 2 from Section 3.3, and walking up 2 steps of a staircase with the
same hand support as in scenario 2 from Section 3.3. Scenarios 1 and 2 allow for
a direct comparison between the trajectories resulting from the two different MPC
schemes. The number of successive QCQPs solved was set as 5, however it was
observed that convergence typically happened in less than 3 successions. The ref-
erence trajectory for both scenarios was set to be simply the forward linear motion
of travel at a height of 0.6 m. The values for objective function weights in (13) and
(15) were set as Q1 = 1, Q2 = 10−4 and λ = 104.

The trajectory for scenario 1 is shown in Fig. 6. From the projected ZMP points
using (10) it is clear that the produced CoM trajectory satisfies the 3D dynami-
cally balanced criterion. To maintain good tracking performance of the reference
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Fig. 6 The resulting trajectory from the MPC scheme (13) for scenario 1. In blue, the horizontal
CoM trajectory and in red, the projected ZMP trajectory (10) since all contacts are coplanar.
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Fig. 7 On the left: the resulting trajectory from the MPC scheme (13) for scenario 2 with hand
support. In blue, the horizontal CoM trajectory and in red, the projected ZMP trajectory (10). It
can be observed that the results are similar to that from Fig. 3. On the right: the resulting z-direction
trajectory from the MPC scheme (13) for scenarios 1 and 2. In black, the CoM trajectory and in
red, the reference height trajectory. The results show that the trajectory successfully lowers from
the initial height z0 = 0.75 m to the reference height 0.6 m.

trajectory for y = 0, it is expected that the projected ZMP would be as close to the
boundary of the single stance (SS) support region as possible. It can be observed
that this MPC scheme generated very similar CoM trajectory results from Fig. 2.

As with Fig. 2, the natural artifact of left-right swaying motion can be observed
in Fig. 6 due to the existence of single support instances. As such, a hand contact
was included (scenario 2) during step 2 of the motion. From the resulting trajectories
shown in Fig. 7 (on the left), the MPC scheme generated a very similar, in fact near
identical, behaviour to that in Fig. 3. The extra hand contact allowed the CoM to
better track the reference trajectory as there is no single support phase sway required
during step 2. To show the tracking of the height trajectory, the initial height of the
CoM was set to be 0.75 m. Fig. 7 (on the right) shows that the MPC CoM planner
was able to quickly converge to the desired reference height of 0.6 m. As such, it can
be claimed that for this scenario, the FFP-SCA formulation was able to achieve both
feasibility of the dynamically balancing constraints and good tracking performance.

Finally, scenario 3 demonstrates the ability for the proposed MPC formulation
to solve more complex behaviours, such as walking up stairs while using the hand
to hold onto the staircase rails. The steps of the stairs were set as 15 cm high and
the reference height trajectory for the CoM was set to be 0.6 m above the surface
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Fig. 8 On the left: the resulting trajectory from the MPC scheme (13) for scenario 3 with hand
support walking up a staircase. The horizontal CoM trajectory is shown in blue. It can be observed
that the results are similar to that from Fig. 7. On the right: the resulting z-direction trajectory
from the MPC scheme (13) for scenario 3. In black, the CoM trajectory and in red, the reference
height trajectory. The blue lines show the left and right foot trajectories indicating that the robot is
walking up the staircase. The results show that the trajectory successfully tracks the desired height
above the staircase platform.

of stair steps. Fig. 8 (on the left) shows the x and y direction (top-down view) CoM
trajectories determined by the MPC. It can be observed that the CoM results for
the x and y directions are very similar to that of walking on a flat ground as shown
in Fig. 7 (on the left). However, the resulting z trajectory shown in Fig. 8 (on the
right) shows significant differences with scenario 2. In addition to satisfying the
dynamically balanced constraints for the locomotion on the non-coplanar contacts,
the desired height trajectory represented by the red line in Fig. 8 (on the right) was
able to be tracked. This example shows the robustness of the formulation and the
QCQP solver to various different scenarios.

5 Discussion

To demonstrate the advantages and use of the 3D model for dynamically balanced
locomotion in Section 2, two different example ways to use the criterion for MPC
generation of CoM trajectory were presented. Both approaches have a fundamen-
tally common point: the generalisations to allow for 3D non-coplanar multiple con-
tacts naturally result in non-convex problems. However, regardless of the use of the
criterion as an objective or constraint, the nature of the criterion is that it is in a bilin-
ear form that can be converted into a convex quadratic function by restricting some
variables. Both MPC approaches take advantage of this and then solve a succession
of convex optimization problems. This is important in the proposed MPC schemes
to ensure that it is still possible to implement them on a robot in real-time. Compar-
ing between the two MPC schemes, it can be observed that using the dynamically
balancing criterion in the objective function results in a problem with more decision
variables than treating it as a constraint (11K vs. 7K, where K is the horizon length).
However, the number of constraints is significantly less in return (9 + K vs. 4K), and
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the resulting problem is only a QP rather than a QCQP. As a result, the approach
from Section 3 is expected to be more computationally efficient than the one from
Section 4. But the constraint MPC approach provides a stricter notion of feasibility
to dynamically balanced locomotion, and is less concerned with optimality.

Finally, it is also worth noting that compared to the traditional ZMP+MPC ap-
proach, several restrictions have been removed, such as coplanar contacts and pre-
determined height trajectory. The interesting point is that if any of these are relaxed,
the problem complexity is identical to that if all are relaxed. As such, the 3D for-
mulation proposed relaxes many conditions from the ZMP+MPC approach while
still maintaining a balance with the computational cost of the resulting method. As
with the ZMP+MPC approach, the focus is typically more on generating dynami-
cally balanced motion rather than optimal gait behaviour. Hence, the development
of methods such as AQP and FPP-SCA provides the opportunity to generate feasible
motion for more general locomotion scenarios in real-time control.

6 Conclusion and Future Work

We proposed a novel model for dynamically balanced trajectory generation, more
general than the classical IPM+ZMP approach, but simple enough to enable fast
computations of CoM trajectories through an iterative resolution of convex QPs or
convex QCQPs. This claim is supported by the low number of decision variables
and constraint equations shown in the problem analysis. The generalizations gained
from the proposed model and MPC approach include the ability to allow for multiple
non-coplanar contacts and not having to predefine the CoM height trajectory. The
results of the two proposed MPC approaches support the belief that the proposed 3D
model of dynamically balanced locomotion is a good candidate for real-time model
predictive control for multi-contact locomotion.

In future work, we will focus on performing experiments on a real humanoid
robot, and address the following points:

1. Both the AQP and FPP-SCA approaches are observed to work well in practice
and converge quickly. However there is no mathematical guarantee on the opti-
mality of the solution, hence better understanding and analysis of such methods
on the particular structure of the proposed MPC formulations should be more
precisely studied.

2. In the optimisation of the CoM trajectories, the contact locations ci could also be
optimized without losing the convex QP structure. This allows the potential to
not only compute the CoM trajectory, but also optimised contact locations.
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