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When measuring quadratic values representative of random fluctuations, such as the thermal noise of Atomic
Force Microscopy (AFM) cantilevers, the background measurement noise cannot be averaged to zero. We
present a signal processing method that allows to get rid of this limitation using the ubiquitous optical beam
deflection sensor of standard AFMs. We demonstrate a two orders of magnitude enhancement of the signal
to noise ratio in our experiment, allowing the calibration of stiff cantilevers or easy identification of higher
order modes from thermal noise measurements.

A common procedure to calibrate the stiffness of
Atomic Force Microscopy (AFM) cantilevers uses the
thermal noise driven fluctuations of its deflection1,2. Im-
plemented in most commercial devices, this method con-
sists in measuring the mean-square amplitude of the can-
tilever’s deflection 〈x2〉 at thermal equilibrium around
〈x〉 = 0. The equipartition principle states that the en-
ergy stored in the spring is in average equal to the ther-
mal energy thus

1

2
k〈x2〉 = 1

2
kBT (1)

where kB (the Boltzmann’s constant) and T (the tem-
perature) are known, and k is the spring constant to
calibrate. At room temperature, these tiny mechani-
cal fluctuations range from 200pm rms for a soft probe
(0.1N/m) to only 10 pm rms for a stiff probe (40N/m).
One is thus very sensitive to presence of the noise in the
measurement. Indeed, let

X = x+ η (2)

be the measured value of the deflection x and η the mea-
surement noise, the contribution of the latter doesn’t van-
ish when computing mean square quantities even after a
long averaging:

〈X2〉 = 〈x2〉+ 〈η2〉 = kBT

k
+ 〈η2〉 (3)

where the cross term 2〈xη〉 = 2〈x〉〈η〉 averages to 0 since
the two stochastic signals are uncorrelated and of zero
mean. The stiffer the cantilever, the smaller is the signal
to noise ratio 〈x2〉/〈η2〉 and the less accurate is the spring
constant calibration.
In order to isolate the contribution of the mechani-

cal fluctuations, one studies the Power Spectral Density
(PSD) SX2 of the signal X :

SX2(f) =
〈|X̃(f)|2〉

∆f
(4)
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where X̃(f) is the Fourier transform of X and ∆f the
spectral bins bandwidth. Indeed, thanks to the resonant
behavior of the cantilever near its normal modes, the en-
ergy of mechanical fluctuations is mainly stored around
the resonance frequencies (especially the first one)2. The
measurement noise, on the contrary, is often only a white
noise, its energy being flat across all the frequency spec-
trum. This is the case for instance for the shot noise
of an optical measurement. It is thus convenient to
study the first resonance of the measured spectrum SX2 ,
which can be fitted by the prediction of the Fluctuation-
Dissipation Theorem (FDT) for a Simple Harmonic Os-
cillator (SHO), with an additional white noise Sη2 :

SX2(f) = Sx2(f) + Sη2 (5)

=
2kBT

πkf0

1/Q

(1− u2)
2
+ u2/Q2

+ Sη2 (6)

where Q is the quality factor and u = f/f0 is the fre-
quency normalized to the resonance one f0. The equipar-
tition theorem (1) can be recovered from the FDT by
integrating this last equation over all frequencies, but
thanks to the resonance the signal to noise ratio is in-
creased by a factor Q near f0. This strategy is effi-
cient and can give reasonable results for stiffnesses up
to 1N/m, but uncertainty is large for stiffer cantilevers,
for which the mechanical fluctuation Sx2 only stand
above the background noise Sη2 in a tiny frequency range
around the resonance. Minimizing the Sη2 contribution
to the PSD is thus highly desirable.
To get rid of this problem, let us perform two simul-

taneous independent measurements X1 and X2 of the
deflection x, each being plagued by an independent noise
η1 and η2:

X1 = x+ η1, X2 = x+ η2 (7)

The Cross Spectrum Density (CSD) SX1X2
of these two

signal then directly averages to the PSD of interest3,4

Sx2 :

SX1X2
(f) =

〈X̃1(f)X̃∗

2 (f)〉
∆f

= Sx2(f) (8)



2

Indeed, all cross spectra corresponding to uncorrelated
stochastic signals (〈xη1〉, 〈xη2〉, 〈η1η2〉) average to 0.
This simple operation thus allows the complete canceling
of the measurement noise, as long as it is uncorrelated to
the mechanical fluctuations of the cantilever. In this let-
ter, we present an implementation of this technique using
the ubiquitous optical beam deflection (OBD) technique.

FIG. 1. Schematic representation of the optical beam deflec-
tion technique: the beam of the laser (a) is focused with lens
(b) on the free end of the cantilever (c). The reflected beam is
centered on the four quadrants photodiode (d). Its position is
a function of the local slope of the cantilever. The fluctuations
of the beam position (measured through the photocurrents
delivered by the quadrants) therefore provide a measurement
of the fluctuations of the cantilever flexion and torsion.

Let us first review the classic OBD method and its
limitations. Introduced by Meyer and Amer5, this tech-
nique is the most widely used in laboratory and com-
mercially available AFMs: it combines ease of use and
high resolution. It consists in illuminating the free end
of the cantilever with a focused laser beam and detect-
ing the fluctuations of the reflected beam position with
a 4-quadrants photodiode (figure 1). The reflected beam
position is function of the local slope of cantilever free
end, thus representative of its flexion (angle θ) and tor-
sion (θ′). Practically the position of reflected beam is
measured by computing a contrast function C0 of the
photocurrents In delivered by the 4 quadrants n = 1 to
4 of the photodiode:

C0 =
I1 + I2 − I3 − I4
I1 + I2 + I3 + I4

(9)

A downward flexion of the cantilever will move the laser
spot towards the top quadrants (1,2), increasing I1 and
I2 and decreasing I3 and I4, thus C0 is a measurement of
the flexion angle θ, hence of the deflection x. A similar
contrast C′

0 between left (1,3) and right (2,4) quadrants
intensities gives a measurement of the torsion angle θ′.
At first order, C0 is proportional to θ or x:

C0 = σθθ + η0 = σxx+ η0 (10)

with η0 the measurement noise, and σθ or σx the sen-
sitivity of the sensor. The thermal fluctuations spectra

Sx2 or Sθ2 will thus be hidden when the amplitude of the
noise is too high:

SC2

0

= σ2
θSθ2 + Sη2

0

= σ2
xSx2 + Sη2

0

(11)

Using gaussian beam optics, the theoretical value of the
angular sensitivity can be computed6:

σθ =
√
8π

R

λ
(12)

where λ is the laser wavelength and R the radius of the
beam waist. The deflection sensitivity σx depends on
the cantilever length L and the oscillation mode m of the
cantilever: using an Euler-Bernoulli description of a rect-
angular cantilever2, it can be shown that σx = βmσθ/L,
with β1 ≈ 1.38, β2 ≈ 4.78, . . .βm ≈ (m − 1/2)π. In
practice, σx is approximately calibrated for mode 1 us-
ing a force curve on a hard surface (usually σx is given
in nm/V in commercial AFMs).
The source of noises contributing to η0 can be clas-

sified into two categories: classical noise, like the light
source having fluctuation in intensity or beam direction,
and quantum noise, like the photon shot noise at the de-
tector and the back-action of the light on the cantilever7.
The effects of classical noise can be reduced by proper
experimental design: the effect of fluctuations in light
intensity for example are canceled using the contrast C0

where the difference between the intensities on the top
quadrants and the bottoms ones is normalized by the
total intensity (eq. 9). On the other hand, quantum me-
chanical noises are unavoidable. The optical shot noise,
which is due to the counting statistics of the photons, is
in most cases the dominant source of detection noise and
limits the resolution of the OBD technique. According
to the Poisson distribution of the light source, the shot
noise is frequency independent and appears as a white
noise in all measured intensities In: SSN

I2
n

= 2eIn, with

e the elementary charge. Using the definition of C0 (eq.
9), assuming the beam is centered on the photodiode, we
compute the flat baseline which represents the shot noise
limit for the deflection measurement:

SSN
η2

0

=

4
∑

n=1

(

∂C0

∂In

)2

SSN
I2
n

=
2e

I0
(13)

where I0 =
∑4

n=1 In is the total photocurrent. Other
contributions may sum on top of this shot noise limit,
such as the ones from the conditioning electronics
(Johnson-Nyquist noise of the current amplifier (white
noise), 1/f noise, high frequency electronics noise, etc.),
from the analog to digital convertion. . . One might no-
tice that we can reduce the shot noise level by increas-
ing the light beam power. However in practice the laser
power is limited. Besides, because of partial light ab-
sorption by the cantilever, raising the power risks to
significantly heat the cantilever, which may alter its
stiffness or functionality8. Typical shot noise limit is
SSN
η2

0

/σ2
x ≈ 4× 10−26m2/Hz (numerical application for
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a L = 125µm long cantilever, using a 0.1mW laser beam
at λ = 633nm focused on a R = 5 µm radius spot, with
a photodiode efficiency of 0.4A/W). This is close to the
thermal fluctuations expected at resonance for a stiff can-
tilever: Sx2(f0) ≈ 9× 10−26m2/Hz for f0 = 300kHz,
Q = 400, k = 40N/m at room temperature. Note that
for AFM experiments where the cantilever is immersed
in water rather than in air (corresponding to a smaller
quality factor Q), the viscosity of the environment broad-
ens the structural resonances and decreases the peak am-
plitude. In these cases, the calibration procedure is re-
stricted to even less stiff cantilevers.
We should note that the usage of nonclassical light

technique (e.g. squeezed states of light9,10) provides
ways of decreasing the noise floor of OBD technique be-
low the shot noise limit11. Nevertheless these quantum
optics techniques involve exotic experimental setup and
the gained factor on the signal-to-noise ratio is at most
ten12,13. In the next paragraph we show that our classical
technique, easy to implement, allows to statistically av-
erage to zero the shot noise contribution in the measured
power spectrum.
The drawback of the cross correlation approach pre-

sented in the introduction (eq. 8) is the need of two
independent measurement of the deflection, apparently
implying a second sensor3,4. We propose here a patented
method14 using only the common 4-quadrants photode-
tector (figure 1). Indeed, this sensor directly gives access
to two independent measurements of the deflection. We
define for this purpose two contrasts

C1 =
I1 − I3
I1 + I3

, C2 =
I2 − I4
I2 + I4

(14)

Those signals are equivalent to the global contrast C0,
in the sense that they are each a direct measurement of
the angular deflection θ (or vertical deflection x) of the
cantilever: Cn = σθθ + ηn = σxx + ηn for n = 0 to 2.
Since each contrast C1 and C2 involves an independent
pair of quadrants, the detection noises η1 and η2 associ-
ated to the two signals are independent. The CSD will
then converge to the PSD of thermal fluctuations of the
cantilever:

SC1C2
= σ2

θSθ2 = σ2
xSx2 (15)

This method is very simple to implement, as it does not
imply any modification of conventional AFM setups, ex-
cept for the data acquisition and processing. Note that
torsion has no effect on C1 and C2, as the normalisa-
tion per pair cancels any lateral positioning effect: if the
laser beam move leftwards for instance, both I1 and I3
increase, but their ratio (thus C1) stay unchanged. Swap-
ping the role of quadrant 2 and 3 in the formulas, one can
equivalently define two signals only sensitive to torsion.
In order to illustrate the effectiveness of the noise

reduction method, we compare the thermal fluctuation
spectra of a cantilever computed in the usual way (with
SC2

0

) and using the cross correlation procedure (SC1C2
)
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FIG. 2. (Color online) Thermal noise spectra on a stiff can-
tilever. The 2 top graphs present the thermal noise spectra
measured in flexion and torsion on the full frequency range
from a 10 s data acquisition, and the 3 bottom graphs are
zooms on the resonances (2 in flexion, 1 in torsion). On the
top graph, the y scale is dual: angular deflection can be read
on the left scale, vertical deflection on the right scale (note
that the right scale calibration is only valid for mode 1). On
each graph, the PSD (blue) is shot noise limited: a noise
floor at 10−18 rad2/Hz hides any features of the thermal fluc-
tuations of the cantilever below this level. This shot noise
contribution averages toward zero for the CSD (red): the rms
value of the remaining noise is 40 times smaller after 10 s aver-
aging. The black dashed curves are fits of the resonances with
the prediction of the FTD for a simple harmonic oscillator.
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on the same acquisition data. The measurements are per-
formed in air at room temperature (T = 295K) on a com-
mercial silicon cantilever with aluminium reflex coating
(Olympus AC160TS-R3). Its nominal characteristics are:
length L = 160µm, stiffness k = 26N/m, resonant fre-
quency f0 = 300kHz. We use a home built OBD setup,
with a stabilized solid state laser from Spectra Physics
(1mW at λ = 532nm). The laser beam is focused on the
tip with a 30mm achromatic lens, resulting in a diffrac-
tion limited circular spot (measured radius: R = 5.4µm).
After reflection, the laser beam is sent at the center of a 4
quadrants photodiode (SPOT-4D from Osioptoelectron-
ics). The photocurrents delivered by each quadrant of
the segmented photodiode are converted to voltages by 4
independent home made low noise preamplifiers (AD8067
operational amplifiers with 100kΩ retroaction and 1MHz
bandwidth). Analog to digital conversion is performed
by NI-PXI 5922 digitizers (ADC, 18 bits, sampling rate
6MHz, National Instruments). Therefore we measure the
four photocurrents In, and using post-acquisition signal
processing, we compute numerically the contrasts C0, C1

and C2 for the flexion, and their equivalent for torsion.
We then compute the thermal noise through the PSD of
C0, and through the CSD of C1 and C2, both in flex-
ion and torsion. Each PSD or CSD is computed us-
ing a Welch averaging on the same given time window
(T = 10 s), using 215 points for the Fourier transform.
This results in a ∆f = 183Hz spectral resolution. We
use the theoretical value for the sensitivity σx or σθ. Note
that σx is mode dependent, we use here only the value of
mode 1: the scale for Sx2 , in m2/Hz, is thus only mean-
ingful for the first mode in figure 2. The scale for Sθ2 , in
rad2/Hz, is accurate on all the frequency range.

Figure 2 displays the measured spectra, with a zoom
on the two first modes in flexion and the first mode in tor-
sion that are visible in the explored frequency range. The
background noise of the PSD is mainly due to the shot
noise of the photodiodes: it is frequency-independent and
its magnitude corresponds to the theoretical amplitude
calculated according to Eq. (13), with I0 = 164µA for
this specific measurement. Above 200kHz, the exper-
imental noise of the PSD deviates slightly from the ex-
pected white noise due to an additional contribution from
the conditioning electronics. We can observe on the CSD
that using the cross correlation approach, the background
noise is decreased with respect to the PSD by a factor of
around 40 after only 10 seconds of averaging. In fact,
when the cantilever thermal noise is not dominant, the
amplitude of the CSD tends to zero in average, and we
only see the positive values in the displayed spectrum
due to the log scale (the CSD is complex, we display
only its real part which can be negative). This is also
the reason why there are some blanks in the CSD curve
far away from the resonances. The thermal fluctuations
of the cantilever are much easier to see on the CSD than
on the PSD: the torsional mode for example presents a
signal to noise ratio below one with the PSD, but clearly
emerges from the background noise in the CSD.
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650 kHz < f < 750 kHz. While the PSD directly converges
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level but the rms of the remaining noise decreases as 1/

√

N .

Let us now discuss the efficiency of the cross-
correlation technique. In every frequency bin of the CSD,
the root mean square value (rms) of the shot noise con-

tribution during the averaging process decays as 1/
√
N ,

where N is the number of averages. This number of av-
erages N depends on the frequency resolution ∆f and
acquisition length T : N = T∆f . The reduction of noise
that can be reached depends on the properties of the sig-
nal. Here with ∆f = 183Hz and T = 10 s , we have
for instance N=1830. So the apparent noise in m2/Hz

or rad2/Hz is reduced by a factor
√
1830 ≈ 42. In or-

der to verify the decay rate 1/
√
N of the remaining rms

noise, we plot in figure 3 the mean value of the PSD and
the root mean square value of the CSD for the measure-
ment in flexion around 700kHz (where only measurement
noise is expected) as a function of the number of averages
N . While the PSD converges towards the background
level of 10−18 rad2/Hz, the CSD starts from the same

background noise but decreases as 1/
√
N . At the last

point displayed N = 5.5× 104, corresponding to 5 min-
utes of acquisition, the cross-correlation gained a factor
of around 237 when we expect

√
N = 234.

In conclusion, the presented method allows a signif-
icant reduction of the background noise in the mea-
surement of thermal fluctuations of an AFM cantilever.
It is easy to implement as it consists only in a signal
processing technique applied to the the common opto-
mechanical setup used in most AFMs. The only require-
ment is the direct access to the signals of the 4 quadrants
of the photodiode. It can be used to enhance the signal to
noise ratio, noteworthily for the calibration of stiff can-
tilevers, or for higher order modes identification. This
simple method can be directly applied to other research
areas where fluctuations are measured with a 4 quadrants
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photodiode, such as passive rheology3,4,15–17.
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14Ludovic Bellon. Procédé d’estimation d’une raideur d’une partie
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