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ABSTRACT

This paper presents analytical solutions for the effective rheological viscoelastic properties of 2D periodic
structures. The solutions, based on Fourier series analysis, are derived first in the Laplace-Carson (LC)
space for different inclusion shapes (rectangle or ellipse) and arrangements. The effective results are
obtained in the form of rational functions of the LC transform variable. Two inversion methods are used
to find the relaxation behavior. The first one is based on the exact inverse of the LC transform while the
second approximates the overall behavior by using a Standard Linear Solid model, which yields very
simple analytical formulas for the coefficients entering the constitutive equations. Results of the two

methods are compared in the case of an application to real materials.
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1. Introduction

Viscoelasticity is a class of mechanical models that can describe
effectively the time dependent behaviors of many materials like
cement, concrete, polymer, glass or biomaterials, to name a few. At
constant loading, those materials are deformed with time (creep)
and vice versa, at constant strain, the internal stress changes with
time (relaxation). These phenomena are more pronounced under
high temperature conditions. Moreover, most materials are het-
erogeneous in nature, i.e. they are mixtures of ingredients of
different characteristics, shapes and sizes. Materials that are both
heterogeneous and viscoelastic are numerous, for example ma-
sonry walls composed of mortar and bricks, concrete made of
granular and cement, polymer composites, etc..

From the structural engineering viewpoint, it is generally
preferred to know the effective viscoelastic properties of the ma-
terials without being concerned by what happens inside. As a
result, determining the overall behavior from the distribution of the
ingredients becomes a distinct subject of interest. The usual
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approach consists in constructing a representative elementary
volume (REV), solving the boundary value problem and finding the
relation between the average stress and strain. This micro-
mechanical method has proved to be powerful in estimating the
effective elastic properties of the heterogeneous materials. From
the study of different inclusion-matrix problems, analytical esti-
mation schemes have been established including Mori-Tanaka, self-
consistent, generalized self-consistent schemes, etc. (Eshelby, 1957;
Mori and Tanaka, 1973; Christensen and Lo, 1979; Benveniste and
Milton, 2003). Numerical methods are also developed to provide
alternative solutions whenever analytical approach is impossible
(Michel et al., 1999; Eyre and Milton, 1999; Monchiet and Bonnet,
2012). Bounds for the effective properties are also derived from
the variational principle (Hashin and Shtrikman, 1963).

Although most of these important results are obtained for
elastic materials, they can be translated to linear non ageing
viscoelastic materials using the correspondence principle (Hashin,
1965, 1970; Christensen, 1969; Schapery, 1967; Wang and Weng,
1992; Kachanov, 1992; Lahellec and Suquet, 2007; Dormieux
et al, 2006). It can be shown that in the Laplace-Carson (LC)
transform space, the writing of the constitutive behavior is the
same as in elasticity, the stiffness tensors being nevertheless
functions of the LC transform variable (denoted thereafter LC var-
iable). However, assuming that the solution in LC space is obtained,
there are still considerable difficulties in obtaining the inverse LC



transform to find the corresponding results in time space (Lévesque
et al., 2007; Le et al., 2007).

The paper is concerned mainly by the viscoelastic behavior of 2D
media which are frequently encountered in masonry structures,
these structures being constituted of 2D walls. The system is
composed of elastic inclusions distributed periodically in a visco-
elastic matrix. The inclusions can have rectangular or elliptical
shapes and they are located at sites of different 2D Bravais lattices.
In LC space, we adopt the method of estimating the effective
behavior based on spatial Fourier transform (Nemat-Nasser et al.,
1982; To et al., 2016a; Hoang and Bonnet, 2013). Explicit and sim-
ple analytical results are found in many situations. Next, the inverse
LC transform will be treated. Two methods are used and compared
in this case. Based on the fact that the effective properties are
rational functions of LC variable, the first method computes exactly
the inverse transform and finds the relaxation function. The second
method proceeds in approximating the overall behavior by using a
rheological Standard Linear Solids (SLS) model (identical to the one
of the matrix phase) and in finding the physical parameters by
studying long term and short term behaviors. We emphasize here
that the effective SLS model is generally not exactly equivalent to
the exact overall viscoelastic behavior of the material. A shown by
Suquet (2012), the effective behavior of a mixture of viscoelastic
materials having the Maxwell behavior will not have the same kind
of behavior (i.e. here of Maxwell type). However by determining
relevant model parameters, we can obtain an approximate effective
SLS model having several features similar to the equivalent ho-
mogeneous material. Numerical experiences on different compos-
ite materials have shown very often that the behavior of mixtures of
SLS matrix and elastic inclusions (including voids or cracks) can be
modeled by using the same kind of behavior as the matrix with
good accuracy. Different tests done in the present paper also show
that the full effective model and the approximate effective model
are very close. The following sections will be dedicated to the
detailed development of those ideas.

2. Viscoelastic behavior of 2 phase periodic composite in
Laplace-Carson space

2.1. Homogenization of periodic heterogeneous viscoelastic
materials

Before proceeding, let us introduce first the notations for Fourier
transform and Laplace-Carson (LC) transform used in this paper.
Since our problem involves 2D periodic functions, it is relevant to
use the Fourier series analysis. Generally, any spatially periodic
function ¢(x, t), i.e. periodic with respect to x, can be expressed as a
Fourier series

o) = ;¢(E.I)€i5‘”- o€, t) :]V ./:p(x.r)e"'s"dx (1)
v

where (&, t) denotes the spatial Fourier transform of ¢(x,t), V the
rectangular unit cell of dimensions a; x a, and & the wave vectors
whose components £;,£ , are given as follows
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where the Einstein's summation convention for repeated index is
not considered. On the other hand, problems involving viscoelastic
behavior can be solved by using the correspondence principle and
LC transform. As a notation, we use ¢* (star * as superscript) for the
LC transform of the time dependent function ¢, for example

©

¢ (x,5) :s/q;(x.t)e“’dt (3)
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In this paper, we are interested in the overall properties of two
phase viscoelastic composites. The materials under consideration
contain heterogeneities of arbitrary shapes « periodically
embedded in a matrix material (Fig. 2). In LC space, the local
constitutive behavior can be written as follows

o' (x,5) = C'(x,5) 1" (x,5) (4)
where C*(x,s) = Cy(s) for matrix (¥#w) and C*(x,s) = C}(s) for
inclusions (xw). To find the effective behavior of the material
C°*(s), we need to solve the localization problem in a representative
elementary volume (REV) and find the linear relation between
average stress *(s) and strain E*(s), namely

= (s) = C¢*(s) : E"(s), ):'(s):\]—/ /o"(x,s)dx,

v
. 1 (5)

E(s) =V /e*(x,s)dx

v

In principle, the size of a REV must be large enough to contain all
the information on the distribution of heterogeneities within the
material. However, for periodic media, it is sufficient to solve a
localization problem in the unit cell V under the periodicity con-
ditions of the local stress field ¢* (x,s) and strain field &*(x.s).

The theory presented in this paper can be applied to any
viscoelastic material. Nevertheless, we shall only deal with special
cases where the heterogeneities are linearly elastic and the matrix
is viscoelastic corresponding to a Standard Linear Solid (LSL). The
behavior of the latter is modeled by a rheological model made up of
three elements (two springs and one dash-pot) as shown in Fig. 1. It
is a Maxwell series in parallel with the second spring that defines
the long term elastic behavior of the material. In LC space, the
elastic stiffness of the equivalent elastic material is a function of the
LC variable s and of the properties of the rheological elements (see
also Nguyen et al.,, 2011). In this case, this dependency is expressed
as:

-1
Cols) = (:,;,‘ +%:;‘> +Co (6)
where Cy; is the elastic stiffness tensor corresponding to the spring
of the Maxwell series, C, the viscosity tensor of the dash-pot and
Co the elastic stiffness tensor of the second spring that corresponds
also to the long-term elastic behavior of the material.

Assuming that the matrix is isotropic, we can write the visco-
elastic tensors in (6)

Cym = 3kyd + 2upyK, C, = 3k, J + 2u,KK, Co
= 3keoJ + 20, K (7)

—o

Fig. 1. The Standard Linear Solid model used for the matrix and the effective material.



using the bulk and shear constants k. tipg. kv, ty. Koo, foo. The
fourth order projection tensors J and [ are defined from the fourth
order identity tensor [ and the second order identity tensor I via the
relation

1

J=zlel, K=1-J (8)

Finally, we can now express Ca(s) via the constants
kg tipgs Kooty Koo 1 as follows

Co(s) = 3ky($)d + 2ug(s) K

ky(s) = ! +1 _]+k o(s) = ! + ! _]+
o(s) = (YRGS oy Mg(s) = YRS Moo
(9)

The heterogeneities are also isotropic and their stiffness tensor
can be written in terms of constants kq, iy as

C) =C1 =3k J + 2y K (10)

2.2. Periodic Eshelby and Hill tensors and estimation of overall
properties

In this section, we summarize briefly some results on the ho-
mogenization of periodic materials issued from the work of Nemat-
Nasser et al. (1982) and applied to 2D structures. Here, the two
Eshelby problems are presented in the periodic setting and the
links between the Eshelby tensor, Hill tensor (Hill, 1965) and the
overall properties are established for an arbitrary inclusion shape.
All the following expressions are written in the LC space (star * as
superscript) and LC variable s is dropped for the sake of clarity.

The first Eshelby problem involves a homogeneous elastic ma-
terial of stiffness Cy subject to a prescribed V-periodic eigenstrain
field &* and zero macroscopic strain. The induced strain field is also
periodic and can be computed by the formula

e =T%(cy: &) (11)

where I‘ok, is the Green operator. In the Fourier space, the 2D Green
operator I‘,sz(E ) admits the analytical expression

(6 = e (‘%kwl +0uZEk + il + 5lmk)
o
ko + 3t FEEE. I
. Sisjsksl s si
(k +3‘ﬂ0)
:— with i=1,2and ? = \/Z3 + 22 (12)

In the specnal case where &" is constant inside a geometrical
region w in V and vanishes outside, for example

-

& — " (WE Oifxzw  (13)

the strain field is then linear in E via the periodic Eshelby tensor
field S*. The latter meets the following relations:

X'x) =1ifxew, x“x) =

-1 () (a4

Generally, the strain field and the periodic Eshelby tensor field
are not uniform in , except for ellipsoidal shapes embedded in a
very large volume V. However, we can average those quantities over

e (X)) =S"(x):E

the inclusion volume w and obtain the relation

(€), = ("), E (15)

in which (S*),, can be computed explicitly as follows
(8", =" g@r”@®co, € =r"x"Ex"(-) (16)
E+0

The quantity fdenotes the inclusion fraction and x“(&) the form
factor of the latter which is defined as the Fourier transform of the
indicator function x”(x). It is also interesting to define the periodic
Hill tensor as P* : Cj = s"(x) whose average is equal to

Yo = Zg(e )T (€ (17)

In the second Eshelby problem, the region w is replaced by a
material of different stiffness C] and the new composite material is
subject to a macroscopic strain E*. The problem can be reformu-
lated by considering that the material is homogeneous again with
elasticity tensor CJ,, like in the first Eshelby problem. However, the
equivalent eigenstrain field &* in the new problem is defined as
(Co—Cl) e =Ch:& ifxcw, & =0 ifx¢w (18)

The strain field ¢* of the material can be determined by super-
posing the two effects due to macroscopic strain and eigenstrain.
Expressing e* in terms of & yields the integral equation for &

Cf,:é':(CB~C']):( +T%(cy : e)) xXEw (19)

Nemat-Nasser et al. (1982) proposed to estimate (i:‘ ) based on
(19). By averaging both sides over w and replacing the eigenstrain
field & in the convolution T%(Cj : &) by its average (¢" ),. they
derived the equation

Co: (&), =(Co—C): (E"+(S"),: (&),

After obtaining (¢ ),, from (20), the effective stiffness C¢* can be
determined with the formula

(20)

I
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2.3. Results for plane strain problems

From (12) and (17), we can recast the average Hill tensor in the
following form

_ o
")y = g W - —2F T

2 o .
#o Ko (ko + gf‘o)

where W and U are the fourth order tensors that are only functions
of the geometry and distribution of the inclusions given by:

25, 0 0 S, S5 0
w=|0 25, 0 |, u=1[ss S; 0 (23)

0 0 S$+5 0 0 2S5

U (22)

in Kelvin's matrix notation. The scalars S; to S5 are the lattice sums
given by:
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=1,2
(24)
and verifying the properties
S]+52=S3+S4+255=1—f, 53+S5=51, S4+S5=52
(25)

It is now possible to obtain all the elements of C¢* based on (21).
Of all the components, the expression for the shear stiffness C{},, is
the simplest, for example

. . f#(‘)
Cia12 = Mo +— (26)
, +i
met (1=~ m%

To derive (26), we have made use of the property
Sy +S2 =1—f. Denoting du* = uj — ug and ok* = ki — ky, we can
compute explicitly all the remaining components. The final re-
sults are more cumbersome than (§5,, and they are listed as
follows

S k0+ %)54 <6k’+£éy‘)
S 3 3
qll]*k0+3u0+ +

e k0+—u0) a0 (6k‘+%éu')

(k;,+—u;,)s3 (6k'+iéu'>
3 3
C§222"‘°+"“° ol A ol T ]
Ho uo(k0+§uo) 46 (6k +§5u)
L1
2 ok’ _35,1' (ko +§#0)55
P ST Y f 3
nzz=Ko—ghoty |~ =7 St 77 |
adu (6k +§au) ﬂo(k0+§ﬂo)

an isotropic material is defined as « = k+ u/3. For materials with
square symmetry, it is the volume response to isotropic stress in the
plane 1-2. In principle, if we want to approximate the anisotropic
materials by an isotropic behavior we can choose the bulk modulus
in (29) and the shear modulus u®* sz in (26). In this case, the
overall constitutive law in the plane 1-2 reads

Sji = K Egge b + 20" (E,; - %E,:k), ij.k=1,2 (30)

2.4. Consideration of inclusion shape and arrangement

By definition, the form factor x“(&) is the Fourier transform of
the characteristic function y“(x), viz

X“(8) =% /e“""dx (31)

[}

Analytical solutions (&) exist for many single inclusion shapes,
for example ellipse, rectangles or polygons (Nemat-Nasser and
Hori, 1993). They can be centered or not at the origin, aligned or
not with the system of axes. Note that for any affine transformation
x = LX — X, that transforms «’ into w, we can always relate the

* ] - * 4 - . ‘] . . 4 .
A= [5_1_ (ko+§“0)53+ (6k +§6u ) ] [5_2 (ko+§uo>54 . (6k +§5ﬂ )

oo e (k6+4§y6) 4" (6k'+%{$u'>

For materials with square symmetry, for example containing
squared or circular inclusions w within a squared unit cell V, we
have the properties

S3=S54 Chin=Cxn (28)

which allows to compute the 2D bulk modulus

; (29)

o 1/ o . . f
K =§(C‘|’1“+Cﬁ,22):l\’0+7

Remark that under plane strain condition, the bulk modulus for

(k;,+§u;,)ss] ?

] [ ok —26
1o #B(ka+g—y6) 45;{(5;(%5#‘) 46u‘(6k‘+-}6u‘) ﬂ;,(k;,+§u;,>

(27)
form factor for w and ',
%/ e EXix — @e"“‘ / e EXax . E=LTE, ory“(f)
© w
i
(32)

where |J| = det(L) is the Jacobian of the transformation that is
constant for the affine transformations. This relation allows us to
compute the form factor of any inclusion that is obtained by
translating, rotating or uniformly deforming a reference inclusion.

Next, those inclusions can be located on sites of different 2D
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Fig. 2. Elliptical and rectangular inclusions arranged in PR (left) and CR lattices (right).

Bravais lattices. Explicit expressions for all type of lattices can be
obtained. However, we shall only focus on rectangular and elliptical
shapes whose principal axes are aligned with the system of axes 1,2.
Two different arrangements are considered: centered rectangular
lattice (CR) or primitive rectangular (PR) lattice (see Fig. 2).

The functions g(&) according to (16) for different configurations
are given below (Nemat-Nasser and Hori, 1993).

For elliptical inclusion of semi axes by, b,

2
PR lattice : g(E):4f[.’1¥] ,

2

CR lattice : g(E):fP‘%(]_,_(_])nH-nz)] ' (33)

ni=Eibi, n=\/n?+n

Jl(mr o2 1/"" o2 [J,(mr

S =4 i - UL

' fz[n azn%+n%+“H agemgln ]
(35)

The cutoff radius 7, is chosen to account for the finite sum of
terms related to values of n near the origin. From a practical

&= max ( 2y 2nb; )
a 4

Regarding the integral on the right hand side (RHS) of (24), it can
be computed explicitly without difficulties by introducing the
orientation 0 between the wave vector and the first coordinate
axis:

viewpoint, it is sufficient to choose 1. = 4e,

o? cos? 0df

oo 27
1 aqzzl pqz
/ ¢Y27h+772[ n | T / n ndno/ o2 cos? )+ sin®

where J;(n) is the Bessel function of first kind and first order.

For rectangular inclusion of dimensions 2b,, 2b,

PR lattice : g(§) =f[sinc(m)sinc(n2)]2.

CR lattice : g(€) = f[smcm])smcmz)(H( 1"'“'2)]2'
(34)

where sinc denotes cardinal sin function.

2.5. Analytical estimation of lattice sums

As shown above, the quantities Sy to Ss are the lattice sums in
the reciprocal space. To et al. (2013, 2016a) showed that it is
possible to simplify the computation of those sums by keeping
some leading terms, i.e. those near the origin and estimate the
remainder by a continuous integral. This approach has proved to
yield simple analytical solutions for spherical and ellipsoidal shapes
with high accuracy. In this paper, we shall employ the same method
to study 2D structures. For example, using the dimensionless wave
vector 1(ny, 1) and the aspect ratio « :%f, we can rewrite the
lattice sum $; for elliptical shapes and PR lattice as

(36)

Let us define ¢(ny,ny) as function of lattice point (ny,n,),
namely.

PR lattice : ¢@(ny,ny) =1 Vny,ny,
CR lattice : ¢(ny,ny) = {1 +( 1)"‘*"2]/2. 3B7)
For CR arrangement, ¢(ny, n2) = 1if ny, ny are both odd or even,

otherwise ¢(ny,n;) = 0. The final results for Sy, S,, ..., S5 for both
lattice types are listed in the following

=45 ] g
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(38)
n 3

S= 4f7127;c [T ] azn 2+772 (a+] [,0 M) +jl nc)]
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(40)
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Itis clear that when e— 0 (or f —0), we recover the results foran
isolated ellipse in an infinite matrix

S _ a S, — 1 _aa+1)
Ylar )y 2Tty BT
(a+2) «
_ S 3
20+ 17 T 21y (43)

which are independent of lattice types and volume fraction. For
circular inclusion, we obtain

Uosos=d sl

Analytical approximations for rectangular inclusions can also be
obtained in the same way. However, the results for the general
cases are much more cumbersome, even when handled by sym-
bolic calculation software like Maple or Mathematica. Results for
the limit case ¢ — 0 (or f — 0, isolated rectangle in an infinite matrix)
are simpler and more interesting

S1=5= (44)

an? .
== L. S +1n2 isinc(ny)sinc(n, )| *dny dn
— 1 1 2
*ﬂ[“ ln( )+4arctana—zln(a +1)] (45)
. > .
Sy = ﬂzﬂm dzn +172 [sinc(ny)sinc(ny)|“dnydny = 1 -5
(46)
2
1 o?n? . : 2
Sy =— —————= | [sinc(n,)sinc dn,d
3 7’2'”?°°<ﬂ217$+17% [ (nl) (772)] man;
1 a2 +1 3 2
7E[aln( 2 )+83rctana—aln(a +1)] (47)

2
ﬂzﬂw <m) [sinc(ny)sinc(n,)]%dn, di,

2
-l [41r — 8 arctan a — 3a ln(a > ]) +lln(“2 + 1)]
47 o? «
(48)

Ss=(1-S4—53)/2 (49)

In a recent work on 2D Eshelby tensors (Zou et al., 2010), those
constants are computed by using explicit expressions of complex
integrals. Our paper follows a different route, via Fourier transforms
(Mura, 1987; Chiu, 1977), and recovers the same results. In a special
case where the inclusion is a square (« = 1) we obtain

0.7

0.6

o
w

Lattice sum

0 0.2 0.4 0.6 0.8 1
Volume fraction f

Fig. 3. Lattice sums $;,S3.8,4 for the rectangular inclusion arranged in CR lattice.

y S=s =12 s 12 (50)
From (44) and (50), we can see a clear difference between the
square shape and circular shape in the coefficients S5, S4,Ss5. Here
the discrepancies are roughly 12% in this case. Then depending on
configurations, these discrepancies can have more or less impacton
the overall behavior.

As an example, we carry out numerical computation of the
lattice sums S4,53,S4 for inclusions with dimensions
by = 100mm, by = 25mm (« = 0.25) for two cases:

- Case 1: Elliptical inclusion with PR arrangement.
- Case 1: Rectangular inclusion with CR arrangement

The vertical and horizontal distances between the inclusions are
the same and varied to obtain systems with different volume
fraction. The sums are taken over all wave vectors satisfying
[ny|<N, |na|<N (51)
with N = 1024. Under this resolution, the lattice sums converge
smoothly to the analytical values when (see Fig. 3) f—0.

According to analytical formulas (45)—(49) for the rectangular
inclusions and « = 0.25, S;—0.2301, S3—0.1544, S;—0.6972
when f—0.The numerical results shown in Fig. 3 and the analytical
results are in very good agreement in this case. All the lattice sums
tend to 0 when f — 1, i.e the whole media is occupied by inclusions,
which is in consistency with Eq. (25).

For elliptical inclusions, we have a simple analytical solution
valid for all ranges of volume fractions. Indeed, applications of
(38)—(42) with @ =0.25 to the structure have yielded results
which match perfectly the numerical solutions (see Fig. 4). The
theoretical limit values are both predicted by the two solutions, i.e.
Sy —0.2, 53 —0.12, S4—0.72 when f—0.

3. Determination of the overall relaxation functions
3.1. Exact inverse Laplace-Carson method

Until now, we have only examined the equivalent viscoelastic
behavior of our system via the correspondence principle. Having
obtained the explicit expressions for the effective moduli in terms
of s variable, we need to invert the latter to find the corresponding
relaxation functions of time t. Fortunately, all the expressions
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Fig. 4. Lattice sums Sy, S3.54 for the elliptical inclusion arranged in PR lattice.

presented in the previous sections are rational function of s and can
be inverted numerically. Given a rational function, we can always
factorize the denominator and decompose the function into a sum
of simpler invertible rational functions.

In the general case, it is possible to simplify significantly the
expression of the effective coefficients by noticing that each com-
bination of elastic coefficients is a rational function with a de-
nominator containing only the denominators d(s) and D(s) of
k', = N(s)/D(s) and 'y = n(s)/d(s). Using the simplification by d(s)
and D(s) leads to rational functions for the effective “elastic” co-
efficients whose polynomials in numerators and denominators are
all of degree 12. However, a more careful inspection of these
components of the rational function allows to factorize A and to
reduce the degree of all polynomials to 7. Then, it is possible to
compute numerically all coefficients of these polynomials and the
poles of the rational function. The details of the computation are
reported in the following.

The effective coefficients of Eq. (27) can be put into the form:

. C
Chin =P+ fK
. JA
C‘2’222|:P+ N
. « B
Clizz =70 + N

where P = ki +4ug. The terms A,B,CA = A.C — B can be expressed
by introducing the numerators and denominators of all
coefficients:

o1 PR S PR [
L:k0+§u0, M:6k0+§6u0. Q = oky +§6u0, R
o 200 o
:6k0—§6u0, Oty

under the form:

M Mo Mmoo Mo MRS Mdu o Mak e
P=iol=aoM=ap = R=ap™ = %=1 %
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=

where d = d(s) and D = D(s) are the polynomials constituting the
denominators of ug and kg , while nj are numerators of the related
quantities i, are of order 1 or 2 in s. Then, the coefficients within the
expressions of the effective coefficients are:
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A =y? (nAnc - ng)

By mathematical manipulations, we arrive at the expressions

np(nAnc -n}+ 4fncnd,,an)

G =
dD(nanc — n,zx)
- np(n,qnc —ng+ 4annd‘,nQD)
2222 = 5
dD(nan¢ — nB)
. n; (nAnc - ng "+ 4fn5nd“an)
Ci’lzz -

dD(nync — n%)

A more careful examination of nan¢ — n% shows that this poly-
nomial contains  the product  nDng,ng, so  that
nanc — ng = 4nDng,nqA2, with



Az = do + d4(53 +S4) + d34(53 + S4) + d555 + dSSSg
+d4555(S3 + S4)

where
do = nin
1
dy = 3 (3ndkd + 4nduD) nn_P

d3q = 4ng,ngnD
ds =2np (2Dnd,‘n + nggdn + 2Ndnd,‘)
dss = %(SnD +6Nd)ng,nq
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Finally, the effective coefficients are:

np(d; +4fnc)

Cﬂll = DdA,

cer (8 + 4fny)
22 =" pga,

cer. _Mi(Bg +4fnp)
1122 DdAz

The numerators and denominators of these rational functions
are polynomials of degree 7 in the Laplace variable. The coefficients
of these polynomials and the poles of each rational function @
can be easily computed by using Matlab software. All poles are
simple and negative and all residues are positive in the numerical
applications, which is physically satisfying.

3.2. Approximate SLS model for the overall behavior

The disadvantage of the exact method is that it is hard to obtain
explicit expressions in terms of the constituent's properties and the
inverse Laplace transform is analytically cumbersome for the gen-
eral cases, as explained previously. Nevertheless, one can always
approximate the overall behavior by the SLS model and determine
correctly the parameters from the long term and short term
behavior of the equivalent material. The final formulae are explicit
and work for all situations, even for the anisotropic cases. As far as
engineering applications are concerned, this approximation is of
interest due to the simplicity and efficiency of the SLS model. All the
following analytical derivations will be dedicated to this method.
Different from the previous works (see e.g Nguyen and Dormieux
and Kondo, 2009; Nguyen et al., 2015a), we shall present all the
parameters of the SLS model in the explicit form.

Determining the parameters associated to the SLS model is
tantamount to find Cf;, 5, and Cj from the asymptotic response of
¢ ass—0 and s— oo, OF

+ (P )ﬁl] lim ds[( c} -}

ce'(s) = M+~m+/(1) C(s) = C&, +5CE + (52
(52)

In other words, it is sufficient to expand " into a power series
in 1/s up to zeroth order and into a power series in s up to firstorder.
To do so, we shall base on equation (21). While the asymptotic
behaviors of i and 7 are rather straightforward

. 1 .
Co(s) =Cm+Cou+ (;) Cols)

=Coo+SCyp+ (sz), Ci(s) = Cy = cst (53)

it is more elaborate to find the asymptotic behaviors of
[(cy—cp) " +(P"),)”" from the constituting elements. We need to
compute the following limits

eI AR (54)

The first and second limits of (54) can be written as.

Sl_l'rg [(C; N ’:‘6)71 + <P.>m]_l - [(Cl —Cm— + F]
lim [(€5-c5) ™"+ (F‘h,]_l =[€1-ca)'+ Pw]_]

(55)

The instantaneous and long time Hill tensors P;, P, inside the
square bracket of (55) can be calculated based on (22), for example

1
i=flim 0= 2(fteo + tpr)

1
(keo +kn) +§(#w + ty)

. U
3 ,
(Moo + #M)(keo + kn + (e + #M)) (56)
Poo = lim (P*), =W km+%u°°
o = lim (P*), =5—W - —— 32—
0 ey (keo +§uw)

Finally, the last limit of (54) will now be treated. From the
following properties

dA™) L dA)
ds =-A “ds AT VA, (57)
we can write
dr, o - B
T R
$ [(C] - Ceo)_ Cy:(Cq1— ,:'w)— +P,

: [(Cl — Co)! +Pm]_]
(58)



with the Hill viscous tensor P, being computed by

distance between the inclusions 2ey,2e; along. x1, x2

i d, . - PR lattice: a; = 2(by +eq), az = 2(by + e3),
P, = lim E(P do - CR lattice: a; = 2(by +e;),a; = 4(by +e3),
* 1, . . . .
— lim i L. W — lim i Ko +3#0 U (59) In this paper, we sete; = e, = e, and adjust e in order to obtain
s—0 ds \ 2u s—0 ds w (K4 §M' systems with different inclusion volume fractions f. As a remark,
LAY 0 when the inclusions are rectangular, our structures can be used to
by some mathematical manipulations, we arrive at the result model wall masonry. The PR and CR lattices correspond respec-
Y p ! tively to the stack bond and running bond systems. However, here
we have solved the problem in a much more general context.
(k., B %u,,) (km + %um) 1,
Py = — ZL’ZW — — 4.2. Assessment of the accuracy of the analytical solution in LC
e ® (koe + %uw) e (km + %uw) space
K 1 P As noted, our solution in LC space is based on the estimation of
o 3o vt 3ty U 60 the eigenstrain in the inclusion. This approximation allows us to
- 2 (60) obtain a simple analytical solution which separates the influences
Moo (keo +4§#w> of stiffness from geometry and facilitates the derivation of the
overall model. The accuracy of this approximation and its impact on
At this step, all the tensors are explicit, for example the overall properties depends on many factors: the inclusion
~e _ ~ ~ ~ -1 5 -1
“oo T oo +f (C1 —Cx)™ +Po )
-1 -1
C,",:C,.—f[(t, — Coo) ! +Fm] ;[(C, —Ceo) ' :Cy: (Cp = Coo)™! +r] : [(c, — Coo) ! +Fm] i (61)
-1 -1
¢y =Cy +f{[(c, —:M—cm)—‘+r,-] —[cl —:w)-‘ww] }

and can be applied in the examples.

4. Numerical applications
4.1. Geometry and material data of the periodic structure

To illustrate the validness of the analytical solutions derived in
previous sections, we consider a particular case where the matrix
and the inclusions are respectively made of mortar and brick ma-
terials. The viscoelastic properties of the constituent materials are
given in Table 1.

The shapes of the inclusions can be rectangular, square, elliptical
or circular. The dimensions by, b, are given in consistency with the
theory presented previously.

- Rectangular (RE) or
by = 100mm, by =25mm

elliptical ~ (EL) shape:

The corresponding sizes of the unit cell a;, ap depend on the

Table 1
Viscoelastic properties of matrix and inclusion used for the simulations (Nguyen
et al., 2015a).

Parameters Values Units
kn 2.404 GPa
M 1.655 GPa
ky 23.639 GPa.h
oy 21.375 GPa.h
Koo 1.257 GPa
e 0.866 GPa
ky 6.111 GPa
™ 4583 GPa

shape, the inclusion volume fraction, the arrangement and the ri-
gidity contrast. Numerical experiences on spherical inclusion have
shown that with moderate rigidity contrast (less than 10) and
volume fraction (less than 0.5), this approximation works very well.
In the present work, the brick is 2—5 times more rigid than the
mortar, suggesting that our estimation can yield good results in this
working range. To judge the quality in more details, we compare
our estimation with the Finite Element Method.

We consider two cases: rectangular inclusion with CR lattice and
elliptical inclusion with PR lattice. The long term properties of the
mortar Ky, e are used, which corresponds to the highest possible
contrast ratio between equivalent elastic properties in LC space for
different values of s. The symmetry and anti-symmetry conditions
are combined with the periodicity boundary conditions to reduce
the computation domain by 1/4. Fig. 5 shows that the strain and
stress inside the rectangular inclusion are not uniform. Further-
more, strong stress concentration and strain localization are
observed at the corner of the brick. Theoretically, stresses and
strains are singular as predicted by singularity analyses on bima-
terial wedges (Vu et al, 2015). Careful mesh refinement at this
corner allowed us to take into account those effects on the overall
properties. For elliptical inclusions, Fig. 6 shows that the stress and
strain distributions are not uniform but the variation is slight. We
note that at that high volume fraction, the strong interaction at
close distance between the inclusions is responsible for the devi-
ation from the Eshelby results.

Despite those observations on the non uniformity of the stress
and strain, the agreement between the FEM and the analytical re-
sults is very good for the whole volume fraction (see Table 2). The
maximal discrepancies are of order 1%, which can be considered as
negligible. This can be explained as being due to the moderate ri-
gidity contrast. In this case, our estimation can capture accurately
the interaction between inclusions. This agreement implies that the



Fig. 5. Distribution of strain energy obtained by FEM method for rectangular inclusion and CR lattice. The left figure corresponds to the direct strain loading Ey;
1 (the remaining strain components E; = Eyy = 0).

strain components E;; = Ej; = 0) and the right figure the shear strain loading E;»

1 (the remaining

" —

Fig. 6. Distribution of strain energy obtained by FEM method for elliptical inclusion and PR lattice. The left figure corresponds to the direct strain loading E;;
1 (the remaining strain components Eyy = Ez; = 0).

strain components Eq; = Ey; = 0) and the right figure the shear strain loading £,

Table 2
Comparison between FEM solution and approximate analytical solution.

f Stiffness [GPa] by FEM solution  Stiffness [GPa] by analytical solution

G Gaz Gz Gaiz G G2z Ciizz Cioiz

Rectangular inclusion — CR lattice

1 1222 1222 3.056 458 12.22 1222 3.056 458
0.794 9.010 7.050 1710 4973 8.924 7.008 1.714 4917
0649 7280 5360 1330 3785 7.156 5.306 1345 3734
0463 5420 4030 1070 2890 5317 3.989 1.082 2.854
0275 3920 3.180 0900 2310 3.869 3.164 0.904 2295
0.132 3050 2730 0780 1980 3.025 2.730 0.782 1.976
0 2412 2412 0680 1.732 2412 2412 0.680 1.732
Elliptical inclusion — PR lattice

0623 6.71 535 1.27 361 6.5411 52196 12624 3.5658
0510 564 439 1.09 3.02 5.5832 43458 1.0879 3.0067
0364 450 3.56 0.93 25 4.496 3.5508 09353 24993
0216 354 298 0.82 213 3.5405 29827 08241 21317
0.104 291 2.65 0.75 1.91 29094 26564 0.751 19119

0.000 2412 2412 0680 1732 2412 2412 0.680 1.732

simple analytical solution can allow to derive the coefficients
entering the overall constitutive equations with a good precision.

4.3. Parametric study of the approximate model

Figs. 7—9 show the effective viscoelastic properties of the
mixture as functions of the volume fraction of brick. There are three
effective viscoelastic tensors due to the chosen Zener's viscoelastic
rheological model for the overall behavior of the material. Each
tensor has four independent viscoelastic parameters due to the 2D
orthotropic anisotropy of the mixture that is a result of the rect-
angular shape of the brick. Figs. 7 and 8 show the long-term
effective elastic stiffnesses and the one of the Maxwell's series,
respectively.

Fig. 9 presents the effective viscous parameters entering the
Maxwell's series. The components Cy117 and (2222 coincide when
the volume fraction of inclusions f tends to 0 or 1 due to the isot-
ropy of the matrix and inclusions. However they are very different

1 (the remaining

when the concentration of inclusions reaches about 60—80%.
Similar trends are obtained for the terms Ci212 and Cqq22. It is
interesting to observe that all the elastic stiffnesses and the vis-
cosities of the Maxwell's series tend to zero when the volume
fraction of brick tends to 1, as expected since an elastic behavior is
assumed for brick inclusion. More precisely, the viscous behavior of
masonry originated by that of the mortar matrix vanishes when the
volume fraction of mortar tends to zero. Similar observations for
the case of elliptic inclusions are shown on Figs. 10—12. A com-
parison between the two kinds of inclusions is also shown on
Fig. 13. The close results obtained for rectangular and elliptic in-
clusions may be due to the same values of
by = 100mm, b, =25mm used for defining the geometry of the
cell.

4.4. Comparison between the relaxation behaviors obtained via the
approximate model and the exact inversion

As explained in subsection 3.1, the inversion of the expression of
the effective coefficients in the Laplace space can be computed by
using the expressions for the poles and residues of the involved
rational fractions. Then, the inversion can be performed explicitly
and compared with the approximate model. After comparison on
numerical results in a few cases, we have found that the difference
between the two approaches is less than 1%.

As an example, we consider the case of rectangular inclusion
and CR lattice and the component C55,,. The geometric parameters
of the system are by = 100mm, by = 25mm and
a, = 240mm, a; = 180mm. After simplification and inversion, the

relaxation component C5,,, . is given by the expression

Cormiex) () = 3.988 +0.0021¢~0928¢ ;. 0,0009e 00399
+3.5597e~0-0617¢ 4 0.2490¢ 00774
+0.0165¢~0:0889¢ | 0 979¢~0.0946¢
+0.0194¢0-1017¢ (62)
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Fig. 7. Influence of lattice type on the coefficients of the long-term stiffness tensor ¢, as functions of the volume fraction of the rectangular inclusions.
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Fig. 8. Influence of lattice type on the coefficients of the stiffness tensor Cf, as functions of the volume fraction of the rectangular inclusions.

The relaxation function of the approximate SLS model is the
following

G522 (s15) (1) = 3.988 + 4237006950 . 0,5958¢~0054% (63)
Using (62) and (63), we can plot the relaxation functions in Fig. 14.
We find that the two curves are extremely close. Both curves cap-
ture well the short and long time modulus and the required time for
full relaxation, that is around 80—100 h.

Next we study the differences in detail. Fig. 15 shows the relative
difference r = Q%fcﬂ in the case of rectangular inclusions for the
coefficient Gypz5. The figure shows that the relative difference is
always inferior to 4.1073, proving that the SLS model represents
well the overall behavior.

Suquet (2012) studied composites constituted of matrix and

inclusion, both being characterized by a viscoelastic behavior of
Maxwell type. In this paper, numerical tests based on a linear
loading followed by a harmonic loading have exhibited significant
differences between a Maxwell approximate model and the real
overall behavior. By comparison, we have also carried out a test
involving a loading similar to the one used in Suquet (2012) where
the strain history along direction 2 is the following function of time

e97 = 0.01t for t <20, &y = 0.2+ 0.01 sin(t — 20) for t > 20
(64)

The remaining strain components are maintained zero
throughout the test. Fig. 16 shows that the responses a2 (t) of the
two models are very close. This again confirms the accuracy of the
present approximation, as already observed in the literature when
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Fig. 10. Influence of lattice type on the coefficients of the long-term stiffness tensor C¢, as functions of the volume fraction of the elliptical inclusions.

the inclusions are elastic (including the cases of void and rigid in-
clusions), i.e. when only one of the constituents displays a relaxa-
tion time. In comparison, the computations reported in Suquet
(2012) involve two fully viscoelastic materials, and therefore two
relaxation times, which can explain qualitatively the difference
between our results and these earlier results.

We have also performed calculations using different geometries
(elliptical inclusion or PR lattice) and find very small differences.
These observations are very interesting since the approximate
model is much simpler than the full inversion method. While the
strategy of the direct inversion method seems to be trivial, the
symbolic calculation is very cumbersome. In our experience, this

calculation is also difficult and can be erroneous without some
careful inspection and elimination of common roots between the
numerators and denominators. From those perspectives, the
simplicity and the ability to capture the real relaxation behavior are
the main advantages of the approximate model. That will be the
main conclusion of this paper.

5. Conclusions and perspectives

In this paper, analytical and numerical solutions for the overall
viscoelastic properties of 2D periodic structures are presented.
Under the plane strain hypothesis, the effective properties are
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obtained explicitly in LC space first. Here, we have used the solution
technique based on integral equation approach and Fourier trans-
form, which has proved to yield a good estimation of the effective
properties. Due to the inclusion shapes (ellipse or rectangle) and
the distribution (PR or CR lattices), the equivalent material is
viscoelastic and anisotropic in the considered plane. After deriving
the overall moduli in LC space, two inversion methods are proposed
to obtain the results in time space, that is the relaxation behavior.
The first one is to calculate directly the inverse of the LC transform
through the decomposition into simple rational fractions, that leads
to exact solutions. The second one is to approximate the equivalent
media with a Standard Linear Solid model and to determine

accurately the parameters based on studies of asymptotic behavior
at short and long time scale.

Finally, applications to masonry structures are presented. The
validation of the approximate homogenization scheme has been
performed successfully by comparison with the results of a FEM
modelling. At the same time, the results have shown a good
agreement between complete LC inversion and the approximate
one. A noticeable influence of both inclusion shapes and distribu-
tion has been obtained. It is important to mention that our results
were obtained in the case of a moderate contrast between inclusion
and matrix and cannot be generalized for very large contrasts.

Based on the estimation in LC space and the approximation
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model via the asymptotic study of LC variable s, the present
approach can be extended to deal with a general hereditary integral
form. Obviously, the exact inversion of Laplace transform can
become more and more cumbersome when the number of relax-
ation times increases, but the derivation of the approximate SLS can
be easily derived as shown in section 3.

In addition, we must acknowledge that under extreme situa-
tions where a strong rigidity contrast is combined with high con-
centration of inclusions and multiple relaxation times, the
estimations in the current form may not be sufficient. However, it
can be shown in the case of elastic materials that the model
described in section 2 corresponds to the first order of an expansion
in correlation functions characterizing the distribution of in-
clusions. Consequently, improvements can be done by using higher
order correlations of material distribution (Nguyen et al., 2016; To
et al, 2016b) and higher order expansion of the exact relaxation
function (Nguyen, 2014; Nguyen et al.,, 2015b). Those aspects will be
investigated in a future work.

Relative difference F(Csls-ca)lcex
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Fig. 15. Relative difference between the exact relaxation function Czy55¢ex(t) and the approximate relaxation function G55 () for rectangular inclusions and CR lattice.



14

f f [
/\ o 0,,(!) (SLS approx)
12 vA czz(t) (exact) ||

1 \ A
v

A\

AWA\
Vv

o v N/
/ Y \TAY
0.6
04
0.2
00 10 20 30 40 60 70 80 90

100

Time t

Fig. 16. Response to linear - harmonic loading for rectangular inclusions and CR lattice.

A last issue concerns the thermomechanical coupling, because
most polymers are viscoelastic and also sensitive to temperature.
The results presented previously can be used without further work
in the case of weak coupling characterized by a moderate tem-
perature dependence of viscosities and elasticity tensors (see e.g
Francfort and Suquet, 1986). Concerning the full thermoviscoelastic
coupling, the method used in this paper is obviously restricted to a
spatial linear behavior in LC space. In this context, the extension of
the methodology presented here to thermoviscoelasticity is
feasible and would be of interest in particular for applications to
composites with a polymer matrix.
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