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 of the same bound. Together with our bound on S, this implies an O(αn)-time algorithm for computing all maximal α-gapped repeats.

Introduction

Notation and basic definitions. Let w = w [START_REF] Lothaire | Combinatorics on Words[END_REF]w [START_REF] Galil | Time-space-optimal string matching[END_REF] . . . w[n] = w [1 . . n] be an arbitrary word. The length n of w is denoted by |w|. For any 1 ≤ i ≤ j ≤ n, word w[i] . . . w[j] is called a factor of w and is denoted by w[i . . j]. Note that notation w[i . . j] denotes two entities: a word and its occurrence starting at position i in w. To underline the second meaning, we will sometimes use the term segment. Speaking about the equality between factors can also be ambiguous, as it may mean that the factors are identical words or identical segments. If two factors u, v are identical words, we call them equal and denote this by u = v. To express that u and v are the same segment, we use the notation u ≡ v. For any i = 1 . . . n, factor w[1 . . i] (resp. w[i . . n]) is a prefix (resp. suffix) of w. By positions on w we mean indices 1, 2, . . . , n of letters in w. For any factor v ≡ w[i . . j] of w, positions i and j are called respectively start position and end position of v and denoted by beg(v) and end (v) respectively. Let u, v be two factors of w.

Factor u is contained in v iff beg(v) ≤ beg(u) and end (u) ≤ end (v). Letter w[i] is contained in v iff beg(v) ≤ i ≤ end (v).

A positive integer p is called a period of w if w[i] = w[i + p] for each i = 1, . . . , n-p. We denote by per(w) the smallest period of w and define the exponent of w as exp(w) = |w|/per(w). A word is called periodic if its exponent is at least 2. Occurrences of periodic words are called repetitions.

Repetitions, squares, runs. Patterns in strings formed by repeated factors are of primary importance in word combinatorics [START_REF] Lothaire | Combinatorics on Words[END_REF] as well as in various applications such as string matching algorithms [START_REF] Galil | Time-space-optimal string matching[END_REF][START_REF] Crochemore | Sqares, cubes, and time-space efficient string searching[END_REF], molecular biology [START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences -Computer Science and Computational Biology[END_REF], or text compression [START_REF] Storer | Data Compression: Methods and Theory[END_REF]. The simplest and best known example of such patterns is a factor of the form uu, where u is a nonempty word. Such repetitions are called squares. Squares have been extensively studied. While the number of all square occurrences can be quadratic (consider word a n ), it is known that the number of primitively-rooted squares is O(n log n) [START_REF] Crochemore | Sqares, cubes, and time-space efficient string searching[END_REF], where a square uu is primitively-rooted if the exponent of u is not an integer greater than 1. An optimal O(n log n)-time algorithm for finding all primitively-rooted squares was proposed in [START_REF] Crochemore | An optimal algorithm for computing the repetitions in a word[END_REF].

Repetitions can be seen as a natural generalization of squares. A repetition in a given word is called maximal if it cannot be extended by at least one letter to the left nor to the right without changing (increasing) its minimal period. More precisely, a repetition r ≡ w[i . . j] in w is called maximal if it satisfies the following conditions:

1. w[i -1] = w[i -1 + per(r)] if i > 1, 2. w[j + 1 -per(r)] = w[j + 1] if j < n.
For example, word cababaaa has two maximal repetitions: ababa and aaa. Maximal repetitions are usually called runs in the literature. Since any repetition is contained in some run, the set of all runs can be considered as a compact encoding of all repetitions in the word, and can then be used to efficiently infer various useful properties related to repetitions [START_REF] Crochemore | Extracting powers and periods in a string from its runs structure[END_REF]. For any word w, we denote by R(w) the number of maximal repetitions in w and by E(w) the sum of exponents of all maximal repetitions in w. Let R(n) = max |w|=n R(w) and E(n) = max |w|=n E(w). The following statements are proved in [START_REF] Kolpakov | On maximal repetitions in words[END_REF].

Theorem 1. E(n) = O(n). Corollary 1. R(n) = O(n).
A series of papers (e.g., [START_REF] Crochemore | Towards a solution to the "runs" conjecture[END_REF][START_REF] Crochemore | On the maximal sum of exponents of runs in a string[END_REF]) focused on more precise upper bounds on E(n) and R(n) trying to obtain the best possible constant factor behind the O-notation. A breakthrough in this direction was recently made in [START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF] where the so-called "runs conjecture" R(n) < n was proved. To the best of our knowledge, the currently best upper bound R(n) ≤ 22 23 n on R(n) is shown in [START_REF] Fischer | Beyond the runs theorem[END_REF]. On the algorithmic side, an O(n)-time algorithm for finding all runs in a word of length n was proposed in [START_REF] Kolpakov | On maximal repetitions in words[END_REF] for the case of constant-size alphabet. Another O(n)-time algorithm, based on a different approach, has been proposed in [START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF].

The O(n) time bound holds for the (polynomially-bounded) integer alphabet as well, see, e.g., [START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF]. However, for the case of unbounded-size alphabet where characters can only be tested for equality, the lower bound Ω(n log n) on computing all runs has been known for a long time [START_REF] Main | An O(n log n) algorithm for finding all repetitions in a string[END_REF]. It is an interesting open question (raised over 20 years ago in [START_REF] Breslauer | Efficient string algorithmics[END_REF]) whether the O(n) bound holds for an unbounded linearly-ordered alphabet. Some results related to this question have recently been obtained in [START_REF] Kosolobov | Lempel-Ziv factorization may be harder than computing all runs[END_REF].

Gapped repeats and subrepetitions. Another natural generalization of squares are factors of the form uvu where u and v are nonempty words. We call such factors gapped repeats. For a gapped repeat uvu, the left (resp. right) occurrence of u is called the left (resp. right) copy, and v is called the gap. The period of this gapped repeat is |u| + |v|. For a gapped repeat π, we denote the length of copies of π by c(π) and the period of π by p(π). Note that a gapped repeat π = uvu may have different periods, and per(π) ≤ p(π). For example, in string cabacaabaa, segment abacaaba corresponds to two gapped repeats having copies a and aba and periods 7 and 5 respectively. Gapped repeats forming the same segment but having different periods are considered distinct. This means that to specify a gapped repeat it is generally not sufficient to specify its segment. If u , u are equal non-overlapping factors and u occurs to the left of u , then by (u , u ) we denote the gapped repeat with left copy u and right copy u . For a given gapped repeat (u , u ), equal factors u [i . . j] and u [i . . j], for 1 ≤ i ≤ j ≤ |u |, of the copies u , u are called corresponding factors of repeat (u , u ).

For any real α > 1, a gapped repeat π is called α-gapped if p(π) ≤ αc(π). Maximality of gapped repeats is defined similarly to repetitions. A gapped repeat (w[i . . j ], w[i . . j ]) in w is called maximal if it satisfies the following conditions:

1. w[i -1] = w[i -1] if i > 1, 2. w[j + 1] = w[j + 1] if j < n.
In other words, a gapped repeat π is maximal if its copies cannot be extended to the left nor to the right by at least one letter without breaking its period p(π). As observed in [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF], any α-gapped repeat is contained either in a (unique) maximal α-gapped repeat with the same period, or in a (unique) maximal repetition with a period which is a divisor of the repeat's period. For example, in the above string cabacaabaa, gapped repeat (ab)aca(ab) is contained in maximal repeat (aba)ca(aba) with the same period 5. In string cabaaabaaa, gapped repeat (ab)aa(ab) with period 4 is contained in maximal repetition abaaabaaa with period 4. Since all maximal repetitions can be computed efficiently in O(n) time (see above), the problem of computing all α-gapped repeats in a word can be reduced to the problem of finding all maximal α-gapped repeats.

Several variants of the problem of computing gapped repeats have been studied earlier. In [START_REF] Brodal | Finding maximal pairs with bounded gap[END_REF], it was shown that all maximal gapped repeats with a gap length belonging to a specified interval can be found in time O(n log n + S), where n is the word length and S is output size. In [START_REF] Kolpakov | Finding repeats with fixed gap[END_REF], an algorithm was proposed for finding all gapped repeats with a fixed gap length d running in time O(n log d + S). In [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF], it was proved that the number of maximal α-gapped repeats in a word of length n is bounded by O(α 2 n) and all maximal α-gapped repeats can be found in O(α 2 n) time for the case of integer alphabet. A new approach to computing gapped repeats was recently proposed in [START_REF] Gawrychowski | Longest α-gapped repeat and palindrome[END_REF][START_REF] Dumitran | Longest gapped repeats and palindromes[END_REF]. In particular, in [START_REF] Gawrychowski | Longest α-gapped repeat and palindrome[END_REF] it is shown that the longest α-gapped repeat in a word of length n over an integer alphabet can be found in O(αn) time. Finally, in a recent paper [START_REF] Tanimura | A faster algorithm for computing maximal α-gapped repeats in a string[END_REF], an algorithm is proposed for finding all maximal α-gapped repeats in O(αn + S) time where S is the output size, for a constant-size alphabet. The algorithm uses an approach previously introduced in [START_REF] Badkobeh | Computing the maximal-exponent repeats of an overlap-free string in linear time[END_REF].

Recall that repetitions are segments with exponent at least 2. Another way to approach gapped repeats is to consider segments with exponent smaller than 2, but strictly greater than 1. Clearly, such a segment corresponds to a gapped repeat π = uvu with per(π) = p(π) = |u|+|v|. We will call such factors (segments) subrepetitions. More precisely, for any δ, 0 < δ < 1, by a δ-subrepetition we mean a factor v that satisfies 1 + δ ≤ exp(v) < 2. Again, the notion of maximality straightforwardly applies to subrepetitions as well: maximal subrepetitions are defined exactly in the same way as maximal repetitions. The relationship between maximal subrepetitions and maximal gapped repeats was clarified in [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF]. Directly from the definitions, a maximal subrepetition π in a string w corresponds to a maximal gapped repeat with p(π) = per(π). Futhermore, a maximal δ-subrepetition corresponds to a maximal 1 δ -gapped repeat. However, there may be more maximal 1 δ -gapped repeats than maximal δ-subrepetitions, as not every maximal 1 δ -gapped repeat corresponds to a maximal δ-subrepetition. Some combinatorial results on the number of maximal subrepetitions in a string were obtained in [START_REF] Kolpakov | On maximal repetitions of arbitrary exponent[END_REF]. In particular, it was proved that the number of maximal δ-subrepetitions in a word of length n is bounded by O( n δ log n). In [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF], an O(n/δ 2 ) bound on the number of maximal δ-subrepetitions in a word of length n was obtained. Moreover, in [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF], two algorithms were proposed for finding all maximal δ-subrepetitions in the word running respectively in O( n log log n δ 2

) time and in O(n log n+ n δ 2 log 1 δ ) expected time, over the integer alphabet. In [START_REF] Badkobeh | Computing the maximal-exponent repeats of an overlap-free string in linear time[END_REF], it is shown that all subrepetitions with the largest exponent (over all subrepetitions) can be found in an overlap-free string in time O(n), for a constant-size alphabet.

Our results. In the present work we improve the results of [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF] on maximal gapped repeats: we prove an asymptotically tight bound of O(αn) on the number of maximal α-gapped repeats in a word of length n (Section 2). From our bound, we also derive an O(n/δ) bound on the number of maximal δ-subrepetitions occurring in a word, which improves the bound of [START_REF] Kolpakov | On maximal repetitions of arbitrary exponent[END_REF] by a log n factor. Then, based on the algorithm of [START_REF] Gawrychowski | Longest α-gapped repeat and palindrome[END_REF], we obtain an asymptotically optimal O(αn) time bound for computing all maximal α-gapped repeats in a word (Section 3). Note that this bound follows from the recently published paper [START_REF] Tanimura | A faster algorithm for computing maximal α-gapped repeats in a string[END_REF] that presents an O(αn + S) algorithm for computing all maximal α-gapped repeats. In this work, we present an alternative algorithm with the same bound that we obtained independently.

In this section, we obtain an improved upper bound on the number of maximal gapped repeats and subrepetitions in a string w. Following the general approach of [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF], we split all maximal gapped repeats into three categories according to periodicity properties of repeat's copy: periodic, semiperiodic and ordinary repeats. Bounds for periodic and semiperiodic repeats are directly borrowed from [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF], while for ordinary repeats, we obtain a better bound.

Periodic repeats. We say that a maximal gapped repeat is periodic if its copies are periodic strings (i.e. of exponent at least 2). The set of all periodic maximal α-gapped repeats in w is denoted by PP α . The following bound on the size of PP α was been obtained in [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF]Corollary 6].

Lemma 1. |PP k | = O(kn) for any natural k > 1.
Semiperiodic repeats. A maximal gapped repeat is called prefix (suffix) semiperiodic if the copies of this repeat are not periodic, but have a prefix (suffix) which is periodic and its length is at least half of the copy length. A maximal gapped repeat is semiperiodic if it is either prefix or suffix semiperiodic. The set of all semiperiodic α-gapped maximal repeats is denoted by SP α . In [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF]Corollary 8], the following bound was obtained on the number of semiperiodic maximal α-gapped repeats.

Lemma 2 ([16]). |SP

k | = O(kn) for any natural k > 1.
Ordinary repeats. Maximal gapped repeats which are neither periodic nor semiperiodic are called ordinary. The set of all ordinary maximal α-gapped repeats in the word w is denoted by OP α . In the rest of this section, we prove that the cardinality of OP α is O(αn). For simplicity, assume that α is an integer number k.

To estimate the number of ordinary maximal k-gapped repeats, we use the following idea from [START_REF] Kolpakov | On primary and secondary repetitions in words[END_REF]. We represent a maximal repeat π ≡ (u , u ) from OP k by a triple (i, j, c) where i = beg(u ), j = beg(u ) and c = c(π) = |u | = |u |. Such triples will be called points. Obviously, π is uniquely defined by values i, j and c, therefore two different repeats from OP k can not be represented by the same point.

For any two points (i , j , c ), (i , j , c ) we say that point (i , j , c ) covers point (i , j , c

) if i ≤ i ≤ i + c /6, j ≤ j ≤ j + c /6, c ≥ c ≥ 2c 3 .
A point is covered by a repeat π if this it is covered by the point representing π. By V [π] we denote the set of all points covered by a repeat π. We show that any point can not be covered by two different repeats from OP k . Lemma 3. Two different repeats from OP k cannot cover the same point.

Proof. Let π 1 ≡ (u 1 , u 1 ), π 2 ≡ (u 2 , u 2 ) be two different repeats from OP k covering the same point (i, j, c). Denote c 1 = c(π 1 ), c 2 = c(π 2 ), p 1 = per(π 1 ), p 2 = per(π 2 ). Without loss of generality we assume

c 1 ≥ c 2 . From c 1 ≥ c ≥ 2c1 3 , c 2 ≥ c ≥ 2c2 3 we have c 1 ≥ c 2 ≥ 2c1 3 , i.e. c 2 ≤ c 1 ≤ 3c2 2 .
Note that w[i] is contained in both left copies u 1 , u 2 , i.e. these copies overlap. If p 1 = p 2 , then repeats π 1 and π 2 must coincide due to the maximality of these repeats. Thus,

p 1 = p 2 . Denote ∆ = |p 1 -p 2 | > 0. From beg(u 1 ) ≤ i ≤ beg(u 1 ) + c 1 /6 and beg(u 1 ) ≤ j ≤ beg(u 1 ) + c 1 /6 we have (j -i) -c 1 /6 ≤ p 1 ≤ (j -i) + c 1 /6.
Analogously, we have

(j -i) -c 2 /6 ≤ p 2 ≤ (j -i) + c 2 /6.
Thus ∆ ≤ (c 1 + c 2 )/6 which, together with inequality c 1 ≤ 3c2 2 , implies ∆ ≤ 5c2 12 . First consider the case when one of the copies u 1 , u 2 is contained in the other, i.e. u 2 is contained in u 1 . In this case, u 1 contains some factor u 2 corresponding to the factor

u 2 in u 1 . Since beg(u 2 ) -beg(u 2 ) = p 2 , beg( u 2 ) -beg(u 2 ) = p 1 and u 2 = u 2 = u 2 , we have |beg(u 2 ) -beg( u 2 )| = ∆, so ∆ is a period of u 2 such that ∆ ≤ 5 12 c 2 = 5 12 |u 2 |.
Thus, u 2 is periodic which contradicts that π 2 is not periodic. Now consider the case when u 1 , u 2 are not contained in one another. Denote by z the overlap of u 1 and u 2 . Let z be a suffix of u k and a prefix of u l where k, l = 1, 2, k = l. Then u k contains a suffix z corresponding to the suffix z in u k , and u l contains a prefix z corresponding to the prefix z in u l . Since beg(z ) -beg(z ) = p k and beg( z ) -beg(z ) = p l and z = z = z , we have

|beg(z ) -beg( z )| = |p k -p l | = ∆, therefore ∆ is a period of z . Note that in this case beg(u k ) < beg(u l ) ≤ i ≤ beg(u k ) + c k /6, therefore 0 < beg(u l ) -beg(u k ) ≤ c k /6. Thus |z | = c k -(beg(u l ) -beg(u k )) ≥ 5 6 c k ≥ 5 6 c 2 . From ∆ ≤ 5 12 c 2 and c 2 ≤ 6 5 |z | we obtain ∆ ≤ |z |/2. Thus, z is a periodic suffix of u k such that |z | ≥ 5 6 |u k |, i.e. π k is either suffix semiperiodic or periodic which contradicts π k ∈ OP k . Denote by Q k the set of all points (i, j, c) such that 1 ≤ i, j, c ≤ n and i < j ≤ i + ( 3 2 k + 1 4 )c.
Lemma 4. Any point covered by a repeat from OP k belongs to Q k .

Proof. Let a point (i, j, c) be covered by some repeat π ≡ (u , u ) from OP k . Denote c = c(π). Note that w[i] and w[j] are contained respectively in u and u and n > c ≥ c ≥ 2c 3 > 0, so inequalities 1 ≤ i, j, c ≤ n and i < j are obvious. Note also that j ≤ beg(u ) + c /6 = beg(u ) + per(π) + c /6 ≤ i + kc + c /6, therefore, taking into account c ≤ 3c 2 , we have

j ≤ i + ( 3 2 k + 1 4 )c.
From Lemmas 3 and 4, we obtain

Lemma 5. |OP k | = O(nk).
Proof. Assign to each point (i, j, c) the weight ρ(i, j, c) = 1/c 3 . For any finite set A of points, we define

ρ(A) = (i,j,c)∈A ρ(i, j, c) = (i,j,c)∈A 1 c 3 .
Let π be an arbitrary repeat from OP k represented by a point (i , j , c ). Then

ρ(V [π]) = i ≤i≤i +c /6 j ≤j≤j +c /6 2c /3≤c≤c 1 c 3 > c 2 36 2c /3≤c≤c 1 c 3 .
Using a standard estimation of sums by integrals, one can deduce that 2c /3≤c≤c Therefore,

1 c 3 ≥ 5 
π∈OP k ρ(V [π]) = Ω(|OP k |). (1) 
Note also that

ρ(Q k ) ≤ n i=1 i<j≤i+( 3 2 k+ 1 4 )c n c=1 1 c 3 < n( 3 2 k + 1 4 )c n c=1 1 c 3 < 2nk n c=1 1 c 2 < 2nk ∞ c=1 1 c 2 = nkπ 2 3 . Thus, ρ(Q k ) = O(nk). (2) 
By Lemma 4, any point covered by repeats from OP k belongs to Q k . On the other hand, by Lemma 3, each point of Q k can not be covered by two repeats from OP k . Therefore,

π∈OP k ρ(V [π]) ≤ ρ(Q k ).
Thus, using 1 and 2, we conclude that

|OP k | = O(nk).
Putting together Lemma 1, Lemma 2, and Lemma 5, we obtain that for any integer k ≥ 2, the number of maximal k-gapped repeats in w is O(nk). The bound straightforwardly generalizes to the case of real α > 1. Thus, we conclude with Theorem 2. For any α > 1, the number of maximal α-gapped repeats in w is O(αn).

Note that the bound of Theorem 2 is asymptotically tight. To see this, it is enough to consider word w k = (0110) k . It is easy to check that for a big enough α and k = Ω(α), w k contains Θ(α|w k |) maximal α-gapped repeats whose copies are single-letter words.

We now use Theorem 2 to obtain an upper bound on the number of maximal δ-subrepetitions. The following proposition, shown in [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF]Proposition 3], follows from the fact that each maximal δ-subrepetition defines at least one maximal 1/δ-gapped repeat (cf. Introduction).

Proposition 1 ([16]). For 0 < δ < 1, the number of maximal δ-subrepetitions in a string is no more then the number of maximal 1/δ-gapped repeats.

Theorem 2 combined with Proposition 1 immediately imply the following upper bound for maximal δ-subrepetitions that improves the bound of [START_REF] Kolpakov | On maximal repetitions of arbitrary exponent[END_REF] by a log n factor. Theorem 3. For 0 < δ < 1, the number of maximal δ-subrepetitions in w is O(n/δ).

The O(n/δ) bound on the number of maximal δ-subrepetitions is asymptotically tight, at least on an unbounded alphabet : word ab 1 ab 2 . . . ab k contains Ω(n/δ) maximal δ-subrepetitions for δ ≤ 1/2.

Computing all maximal α-gapped repeats

We now turn to the algorithmic question how to efficiently compute all maximal α-gapped repeats in a given word. Recall (cf Introduction) that an algorithm with running time O(α 2 n + S) has been proposed in [START_REF] Kolpakov | Searching of gapped repeats and subrepetitions in a word[END_REF] for this problem, which becomes O(α 2 n)-time taken into account the bound on S. On the other hand, it was shown in [START_REF] Gawrychowski | Longest α-gapped repeat and palindrome[END_REF] that computing the longest α-gapped repeat can be done in time O(αn). It is therefore a natural question whether all maximal α-gapped repeats can be computed in time O(αn + S). Here we answer this question positively. Together with the the S = O(αn) bound of Theorem 2, this implies the following result.

Theorem 4. For a fixed α > 1, all maximal α-gapped repeats in a word of length n over a constant alphabet can be computed in O(αn) time.

The proof of Theorem 4 can be found in the full version of this work [START_REF] Crochemore | Optimal searching of gapped repeats in a word[END_REF]. It is based on a case analysis and uses ideas of [START_REF] Gawrychowski | Longest α-gapped repeat and palindrome[END_REF].

We note that independently of our work, another O(αn + S)-time algorithm for computing all maximal α-gapped repeats has been recently announced in [START_REF] Tanimura | A faster algorithm for computing maximal α-gapped repeats in a string[END_REF].

Note that, as mentioned earlier, a word can contain Θ(αn) maximal α-gapped repeats, and therefore the O(αn) time bound stated in Theorem 4 is asymptotically optimal.

Concluding remarks

In this work, we proved the tight O(αn) bound on the number of maximal αgapped repeats in a word. We note that while submitting this paper, manuscript [START_REF] Gawrychowski | Efficiently finding all maximal $α$-gapped repeats[END_REF] appeared that proves that the number of maximal α-gapped repeats is bounded by 18αn. From our bound, we obtain an O(n/δ) bound on the number of maximal δ-subrepetitions in a word, which improves the bound of [START_REF] Kolpakov | On maximal repetitions of arbitrary exponent[END_REF] by a log n factor. We also presented an O(αn)-time algorithm (obtained independently from [START_REF] Tanimura | A faster algorithm for computing maximal α-gapped repeats in a string[END_REF]) for computing all maximal α-gapped repeat in a word.

Besides gapped repeats we can also consider gapped palindromes which are factors of the form uvu R , where u and v are nonempty words and u R is the reversal of u [START_REF] Kolpakov | Searching for gapped palindromes[END_REF]. A gapped palindrome uvu R in a word w is called maximal [START_REF] Gawrychowski | Longest α-gapped repeat and palindrome[END_REF]. It can be shown analogously to the results of this paper that for α > 1 the number of maximal α-gapped palindromes in a word of length n is bounded by O(αn) and for the case of constant alphabet, all these palindromes can be found in O(αn) time 4 .

if w[end (u) + 1] = w[beg(u R ) -1] and w[beg(u) -1] = w[end (u R ) + 1] for beg(u) > 1 and end (u R ) < |w|. A maximal gapped palindrome uvu R is α- gapped if |u| + |v| ≤ α|u|
In this paper, we consider maximal α-gapped repeats with α > 1. However, this notion can be formally generalized to the case of α ≤ 1. In particular, maximal 1-gapped repeats are maximal repeats whose copies are adjacent or overlapping. It is easy to see that such repeats form runs whose minimal periods are divisors of the periods of these repeats. Moreover, each run in a word is formed by at least one maximal 1-gapped repeat, therefore the number of runs in a word is not greater than the number of maximal 1-gapped repeats. More precisely, each run r is formed by exp(r)/2 distinct maximal 1-gapped repeats. Thus, if a word contains runs with exponent greater than or equal to 4 then the number of maximal 1-gapped repeats is strictly greater than the number of runs. However, using an easy modification of the proof of "runs conjecture" from [START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF], it can be also proved the number of maximal 1-gapped repeats in a word is strictly less than the length of the word. Moreover, denoting by R 1 (n) the maximal possible number of maximal 1-gapped repeats in words of length n, we conjecture that R(n) = R 1 (n) since known words with a large number of runs have no runs with big exponents. We can also consider the case of α < 1 for repeats with overlapping copies and, in particular, the case of maximal 1/kgapped repeats where k is integer greater than 1. It is easy to see that such repeats form runs with exponents greater than or equal to k + 1. It is known from [START_REF] Bannai | A new characterization of maximal repetitions by Lyndon trees[END_REF]Theorem 11] that the number of such runs in a word of length n is less than n/k, and it seems to be possible to modify the proof of this fact to prove that the number of maximal 1/k-gapped repeats in the word is also less than n/k = αn. These observations together with results of computer experiments for the case of α > 1 leads to a conjecture that for any α > 0, the number maximal α-gapped repeats in a word of length n is actually less than αn. This generalization of the "runs conjecture" constitutes an interesting open problem. Another interesting open question is whether the obtained O(n/δ) bound on the number of maximal δ-subrepetitions is asymptotically tight for the case of constant alphabet.

32 1 c 2

 12 for any c . Thus, for any π from OP k ρ(V [π])

Note that in[START_REF] Gawrychowski | Longest α-gapped repeat and palindrome[END_REF], the number of maximal α-gapped palindromes was conjectured to be O(α 2 n).
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