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Comparison of Spectroscopic Strategies to Determine Molecular Geometries and the

Impact of Nuclear versus Atomic Masses: The Example of HCO+ and HOC+

Mirjana Mladenović∗ and Marius Lewerenz†

Université Paris-Est, Laboratoire Modélisation et Simulation Multi-Echelle (MSME),
UMR 8208 CNRS, 5 bd Descartes, 77454 Marne la Vallée, France

(Dated: to appear in a special issue of the journal Molecular Physics devoted to the 25th HRMS Colloquium, 2018)

We compare a recently proposed mixed experimental/theoretical procedure for the derivation
of molecular equilibrium structures with several commonly used spectroscopic approaches using
experimental data for several isotopologues. We also examine the sensitivity of the results from these
approaches to the replacement of the commonly employed atomic masses with nuclear masses. This
point is of particular importance for ionic species like HCO+ and HOC+ which serve as numerical
reference cases. The scatter of molecular equilibrium geometries derived by different approaches is
found to exceed stated statistical uncertainties by about an order of magnitude.

I. INTRODUCTION

Recently, standard spectroscopic parameters for
the isotopologues of HCO+ and HOC+ were deter-
mined by means of a theoretical two-step procedure.1

In the first step, the ab initio computed three-
dimensional CCSD(T)/cc-pVQZ potential energy surface
of Mladenović and Schmatz2 for the isomerizing system
HCO+/HOC+ was used to obtain the energies of the ro-
tational levels up to J = 15 in the ground vibrational
state and in the singly excited vibrational νi states for
i = 1− 3. The computed rovibrational energies were fit-
ted to the conventional spectroscopic expressions. The
rotational constants Bth

i obtained in this manner for
i = 0− 3 deviate by approximately 0.005 cm−1(200MHz)
from their experimentally derived counterparts Bexp

i .
This disagreement was corrected in the second step.
Ascribing the difference between Bth

i and Bexp
i to the

restricted accuracy of the equilibrium bond lengths, a
new set of structural parameters was derived by com-
bining the experimental ground-state rotational con-
stants Bexp

0 with theoretical rotation-vibration correc-
tions ∆Bth

0 = Bth
e −Bth

0 computed variationally (beyond
a perturbational approach), where Bth

e is the equilibrium
rotational constant for the CCSD(T)/cc-pVQZ potential
energy surface. The procedure introduced in Ref. 1, here-
after Paper I, led to estimates of the spectroscopic con-
stants and equilibrium bond distances in excellent agree-
ment with values derived from experiments.

All stable isotopologues of HCO+ and HOC+ involv-
ing H, D, 16O, 17O, 18O, 12C, and 13C were considered
in Paper I, in total 24 molecular cations. The rovibra-
tional calculations and the equilibrium structure deter-
minations were carried out using atomic masses. This is
common practice in nuclear dynamics computations, but
there is an obvious problem for ionic species.

Within the Born-Oppenheimer approximation, inter-
acting nuclei are described by a mass-independent poten-
tial energy (hyper)surface, providing the energy of the
electronic subsystem, so that a single potential energy
surface is used for all isotopic variants of a molecular
system under investigation. The equilibrium geometry,

defined as usual as the minimum of the potential en-
ergy surface, is thus mass-independent and unique for
all isotopologues. The Born-Oppenheimer approxima-
tion and its electronic-structure implementations rely on
a perfect separation of the electronic and nuclear coordi-
nates. This, in turn, implies that the nuclear (rotation-
vibrational) motion should, rigorously speaking, involve
the nuclear masses. Whereas the use of atomic masses in
connection with nuclear dynamics computations is con-
sidered to be a pragmatic approach, the use of nuclear
masses is conceptually more correct and the only sound
basis for systematic improvements.
The purpose of the present paper is to investigate the

influence of the nuclear versus atomic masses on the
spectroscopic and structural parameters of the molec-
ular cations HCO+ and HOC+. Since the masses ex-
plicitly enter in the process of extracting the geometric
parameters from the observed spectral (rotational) tran-
sitions, this issue is of relevance also for estimating equi-
librium structures from experimental ground-state rota-
tional constants. In practice, rotational transitions ob-
served for linear triatomic molecules are compactly rep-
resented by a polynomial expansion in terms of J(J +1)
and K2, where J and K are the quantum numbers speci-
fying the state of the total rotational angular momentum
and of its projection onto the body-fixed (molecular) z
axis, respectively. The frequency ν of the rotational tran-
sition J → J+1 in a vibrational Σ state v is, for instance,
given by

ν =2Bv (J + 1)− 4Dv (J + 1)3

+ 2Hv (J + 1)3(3J2 + 6J + 4) . . . ,
(1)

where Bv, Dv, Hv, and so on, are expansion parameters
appropriate for the vibrational state v. The dominant
term in Eq. (1) is the first term involving the rotational
constant Bv. For a given geometric arrangement or a
rigid body, the rotational constant is a quantity well-
established from the mathematical and physical point of
view. In the actual circumstances of rotating and vibrat-
ing systems, we do, however, encounter problems of both
conceptual and practical nature.3–8 In the present work,
we revisit some of these issues on the example of HCO+
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TABLE I: Atomic ma and nuclear mn masses in the unified
atomic mass unit u.a The reduced masses µr, µR (in u) for
the main form of HCO+ are calculated by means of Eq. (8).

species ma mn

H 1.007825035 1.0072765

D 2.014101779 2.0135532
12C 12.0 11.9967085
13C 13.003354826 13.0000633
16O 15.99491463 15.9905260
18O 17.99916030 17.9947717

µr 6.856209 6.854328

µR 0.972804 0.972283

a The atomic masses are taken from Ref. 9.

and HOC+. We first give a brief overview of the the-
oretical approach which we employed (Section II). Our
quantum-mechanical calculations provide a consistent set
of data, which we use to study the mass effect on spectral
and geometric parameters (Section IIA). Different com-
monly used approaches to obtain information about the
equilibrium structure are considered (Section III), lead-
ing us to a certain number of conclusions (Section IV).

II. SPECTRAL AND GEOMETRIC
PARAMETERS

The theoretical approach of Paper I is used in com-
bination with nuclear masses in this work. Masses are
given in the unified atomic mass unit u, which stands
for u=ma(

12C)/12=10−3 kgmol−1/NA, where ma(
12C)

is the mass of the atom 12C and NA Avogadro’s number.9

The atomic (nuclear plus electronic) masses ma and the
nuclear masses mn of the isotopes of hydrogen, carbon,
and oxygen are summarized in Table I for convenience.
A glance at Table I shows that mn are approximately
5 × 10−4 to 5 × 10−3 u (0.05%) smaller than ma. In
our computations, the nuclear masses are internally eval-
uated from the atomic masses ma provided in Table
I. The conversion factor used for the electron mass is
1822.888515, so that me = 1/1822.888515 u.
In our present analysis, we include only those iso-

topologues of HCO+ and HOC+, for which experimen-
tal values of the ground-state rotational constant Bexp

0

are known. This is the case for eight substituted iso-
topic forms of HCO+ (HCO+,10 HC17O+,11 HC18O+,12

H13CO+,13 H13C18O+,14 DCO+,15 DC18O+,16 and
D13CO+ 13) and four isotopologues of HOC+ (HOC+,17

H18OC+,18 HO13C+,18,19 and DOC+ 17).
squeezetable
The rovibrational energies computed using the nuclear

masses for the total rotational angular momentum up
to J = 15 are fitted to appropriate spectroscopic formu-

lae, following the procedure of Paper I. To facilitate the
comparison, the same effective spectroscopic Hamiltoni-
ans are used for the atomic-mass and nuclear-mass cases
for each of the species studied. The spectroscopic pa-
rameters obtained in the fits for the vibrational ground
state and for the singly excited ν1, ν2, and ν3 states are
listed in Tables II and III for the isotopic variants of
HCO+ and in Table IV for the isotopic variants of HOC+.
There, Tv is the term energy and Bv the effective ro-
tational constant for the vibrational state v, where we
use v = 0 − 3 to denote the vibrational states (0, 00, 0),
(1, 00, 0), (0, 11, 0), and (0, 00, 1), respectively. The cen-
trifugal distortion contribution is expressed in terms of
the quartic centrifugal distortion constant Dv and higher
order constants, such as Hv (sextic), Lv (octic), and so
on. The ℓ-type doubling contribution is described by the
ℓ-type doubling constant qv and the parameters qJv , q

JJ
v ,

and so on for its centrifugal distortion corrections. The
results obtained using the atomic masses are taken from
Paper I. The equilibrium rotational constants and effec-
tive rotational constants computed using atomic masses
are denoted by Ba

e and Ba
v , respectively. Qualities of the

fits obtained in the atomic-mass and nuclear-mass cases
are comparable, as seen by similar fit standard deviations
σ of approximately 10Hz in Tables II-IV.

The replacement of the atomic masses with the nu-
clear masses affects the effective rotational constants
B0, B1, B2, B3 by 9-15MHz, as seen by inspection of the
difference Bv−Ba

v in Tables II-IV. There we also see that
the difference Be − Ba

e is equal to 9-15MHz, too, where
Be and Ba

e are the equilibrium rotational constants com-
puted for the CCSD(T)/cc-pVQZ equilibrium structure
using nuclear masses and atomic masses, respectively.
This thus shows that the difference Be − Ba

e is a major
contributor to the difference Bv −Ba

v for v = 0− 3. The
centrifugal distortion constants Dv are approximately
0.05 kHz (0.05%) larger than Da

v . The ℓ-type doubling
constants qv are larger than qav by 0.1MHz for the iso-
topic forms of HCO+ and by 0.2MHz for the isotopic
forms of HOC+, which represent a change of approxi-
mately 0.05%. The vibration-rotation interaction con-
stants αv = B0 − Bv are larger than αa

v = Ba
0 − Ba

v by
at most 0.2MHz (0.05%). Finally, the wavenumbers of
the ν1, ν2, ν3 vibrations are increased by at most 1 cm−1

upon replacement of atomic masses with nuclear masses.

After publication of Paper I, we have learned that
Warner in his Ph.D. thesis14 had measured the rotational
transitions J = 2 → 3 and J = 3 → 4 in the ground vi-
brational state of HOC+, H18OC+, and HO13C+, from
which he had derived (Bexp

0 , Dexp
0 ) of (44 743.943,116.75),

(43 305.969,108.32), (42 876.559,107.25) in (MHz,kHz)
for these systems, respectively. These results are in good
agreement with the experimental data of Gudeman et
al.18,19 and Amano and Maeda,17 which were used in
Paper I (Table III) and here in Table IV. Warner had
also measured the rotational transition J = 2 → 3
at 248 459.964MHz in the ground vibrational state of
H18O13C+. From this value using Eq. (1), one calcu-
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TABLE II: Spectroscopic parameters derived for the isotopic variants of HCO+ using nuclear masses. Values shown in brackets
were obtained in Paper I using atomic masses.

Parameter H12C16O+ H12C17O+ H12C18O+ H13C16O+ H13C18O+

Be / MHz 44635.23 43565.63 42614.46 43412.78 41361.54

Be − Ba
e / MHz 15.22 14.58 14.02 14.35 13.13

B0 / MHz 44391.37 43330.07 42386.20 43178.57 41142.93

B0 − Ba
0 / MHz 15.09 14.45 13.91 14.23 13.02

D0 / kHz 82.01 [81.95] 78.15 [78.10] 74.81 [74.76] 77.64 [77.59] 70.56 [70.51]

H0 / Hz 0.071 [0.071] 0.065 [0.065] 0.061 [0.061] 0.063 [0.063] 0.053 [0.053]

σ0 / Hz 9.70 [8.45] 8.93 [8.81] 9.34 [7.63] 8.17 [8.93] 5.82 [6.90]

Best
0 / MHz 44594.46 [44594.42] 43528.43 [43528.77] 42580.37 [42580.99] 43376.53 [43377.18] 41331.84 [41333.14]

Bexp
0 / MHz 44594.42866(16)a 43528.9253(19)b 42581.21(4)c 43377.3019(17)d 41333.587(5)e

T2 /cm−1 829.44 [829.25] 828.40 [828.21] 827.48 [827.29] 821.98 [821.80] 820.01 [819.82]

B2 / MHz 44471.56 43407.86 42461.87 43249.54 41209.65

B2 − Ba
2 / MHz 15.11 14.47 13.93 14.25 13.03

D2 / kHz 83.62 [83.57] 79.67 [79.62] 76.24 [76.19] 79.06 [79.01] 71.81 [71.76]

H2 / Hz 0.084 [0.084] 0.077 [0.077] 0.071 [0.071] 0.074 [0.074] 0.062 [0.062]

σ2 / Hz 12.33 [11.45] 10.17 [9.81] 9.02 [8.45] 9.60 [9.64] 7.95 [8.02]

q2 / MHz 209.95 [209.85] 200.30 [200.21] 191.90 [191.82] 200.44 [200.36] 182.47 [182.40]

qJ2 / kHz -1.80 [-1.79] -1.67 [-1.67] -1.56 [-1.56] -1.65 [-1.65] -1.42 [-1.42]

qJJ
2 / Hz 0.024 [0.024] 0.022 [0.022] 0.019 [0.019] 0.020 [0.020] 0.016 [0.016]

σq / Hz 9.68 [9.14] 9.65 [9.69] 7.68 [6.15] 7.89 [9.07] 6.68 [6.39]

α2 / MHz -80.19 [-80.17] -77.79 [-77.77] -75.68 [-75.66] -70.97 [-70.95] -66.72 [-66.70]

Best
2 / MHz 44674.65 [44674.59] 43606.24 [43606.54] 42656.06 [42656.65] 43447.52 [43448.13] 41398.57 [41399.84]

Bexp
2 / MHz 44677.1489(18)d 42659.160(8)e 43450.524(8)e 41402.389(8)e

T3 /cm−1 2179.44 [2179.09] 2152.65 [2152.31] 2128.52 [2128.19] 2145.68 [2145.35] 2092.82 [2092.51]

B3 / MHz 44098.63 43047.00 42111.71 42895.00 40877.89

B3 − Ba
3 / MHz 14.94 14.30 13.76 14.08 12.89

D3 / kHz 82.10 [82.04] 78.24 [78.18] 74.88 [74.83] 77.74 [77.69] 70.64 [70.59]

H3 / Hz 0.070 [0.070] 0.065 [0.065] 0.060 [0.060] 0.062 [0.062] 0.053 [0.053]

σ3 / Hz 7.88 [7.51] 6.60 [7.25] 6.40 [5.62] 7.44 [7.10] 5.39 [5.57]

α3 / MHz 292.75 [292.59] 283.07 [282.91] 274.49 [274.34] 283.57 [283.42] 265.04 [264.90]

Best
3 / MHz 44301.71 [44301.83] 43245.38 [43245.85] 42305.90 [42306.65] 43092.98 [43093.76] 41066.81 [41068.24]

Bexp
3 / MHz 44299.8687(78)d 42305.024(8)e 43091.852(8)e

T1 /cm−1 3086.29 [3085.58] 3083.79 [3083.08] 3081.67 [3080.96] 3063.70 [3062.99] 3059.76 [3059.05]

B1 / MHz 44038.81 42986.42 42051.39 42850.77 40834.08

B1 − Ba
1 / MHz 14.94 14.31 13.77 14.09 12.91

D1 / kHz 81.27 [81.22] 77.48 [77.42] 74.16 [74.12] 77.03 [76.98] 69.98 [69.93]

H1 / Hz 0.068 [0.068] 0.065 [0.065] 0.061 [0.061] 0.062 [0.062] 0.054 [0.054]

σ1 / Hz 15.18 [14.70] 13.25 [13.28] 10.83 [9.41] 9.88 [9.38] 8.97 [9.49]

α1 / MHz 352.57 [352.41] 343.65 [343.51] 334.81 [334.67] 327.80 [327.66] 308.86 [308.74]

Best
1 / MHz 44241.89 [44242.01] 43184.80 [43185.26] 42245.58 [42246.32] 43048.75 [43049.52] 41023.00 [41024.39]

Bexp
1 / MHz 44240.53309(56)e 42244.862(8)e 43048.158(8)e

(n)Best
e [(a)Best

e ]/ MHz 44838.30 [44838.15] 43763.99 [43764.21] 42808.63 [42809.14] 43610.75 [43611.28] 41550.44 [41551.63]
(a)Bexp

e / MHz 44840.1330(161)g 42811.0181(161)g 43613.2505(161)g

S0[S
a
0 ] /MHz 242.47 [242.33] 235.57 [235.44] 228.97 [228.85] 234.72 [234.59] 220.23 [220.12]

∆B0 / MHz 243.86 [243.73] 235.56 [235.44] 228.27 [228.15] 234.22 [234.10] 218.61 [218.50]

∆B0 − S0 / MHz 1.39 -0.01 -0.70 -0.50 -1.62

a Fit 2 of Cazzoli et al.10

b Dore et al.11

c Bogey et al.12

d Lattanzi et al.13

e Warner.14

f Neese et al.20

g Dore et al.15
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TABLE III: Spectroscopic parameters derived for the isotopic variants of DCO+ using nuclear masses. Values shown in brackets
were obtained in Paper I using atomic masses.

Parameter D12C16O+ D12C18O+ D13C16O+

Be / MHz 36035.19 34424.09 35379.38

Be −Ba
e / MHz 9.86 9.02 9.52

B0 / MHZ 35861.59 34261.63 35210.56

B0 −Ba
0 / MHz 9.78 8.96 9.45

D0 / kHz 55.24 [55.21] 50.16 [50.13] 52.88 [52.85]

H0 / Hz 0.050 [0.050] 0.043 [0.043] 0.046 [0.046]

σ0 / Hz 6.76 [6.56] 4.99 [5.54] 6.19 [6.18]

Best
0 / MHz 36020.07 [36019.81] 34413.35 [34413.66] 35366.58 [35366.70]

B
exp
0 / MHz 36019.76765(14)a 34413.78556(18)a 35366.70968(21)a

T2 /cm−1 666.39 [666.30] 663.90 [663.81] 656.94 [656.85]

B2 / MHz 35956.82 34352.11 35297.88

B2 −Ba
2 / MHz 9.83 9.00 9.48

D2 / kHz 56.85 [56.82] 51.59 [51.56] 54.33 [54.30]

H2 / Hz 0.063 [0.063] 0.054 [0.054] 0.058 [0.058]

σ2 / Hz 12.75 [12.29] 8.55 [8.19] 8.30 [7.76]

q2 / MHz 169.63 [169.56] 155.42 [155.36] 165.82 [165.76]

qJ2 / kHz -1.32 [-1.32] -1.15 [-1.15] -1.25 [-1.25]

qJJ
2 / Hz 0.023 [0.023] 0.019 [0.019] 0.021 [0.021]

σq / Hz 5.18 [5.05] 7.50 [7.81] 9.66 [9.44]

α2 / MHz -95.22 [-95.18] -90.48 [-90.45] -87.32 [-87.29]

Best
2 / MHz 36115.30 [36115.00] 34503.83 [34504.10] 35453.90 [35453.98]

B
exp
2 / MHz 36116.66634(80)b

T3 /cm−1 1901.07 [1900.81] 1870.99 [1870.75] 1894.10 [1893.85]

B3 / MHz 35656.03 34071.61 35012.79

B3 −Ba
3 / MHz 9.70 8.89 9.36

D3 / kHz 55.21 [55.18] 50.11 [50.09] 52.84 [52.81]

H3 / Hz 0.049 [0.049] 0.043 [0.043] 0.044 [0.044]

σ3 / Hz 2.83 [2.44] 2.64 [3.00] 2.66 [2.54]

α3 / MHz 205.56 [205.48] 190.02 [189.94] 197.77 [197.69]

Best
3 / MHz 35814.51 [35814.34] 34223.33 [34223.71] 35168.81 [35169.01]

B
exp
3 / MHz 35813.3618(31)b

T1 /cm−1 2580.80 [2580.46] 2554.57 [2554.23] 2529.79 [2529.47]

B1 / MHz 35636.66 34010.18 34844.93

B1 −Ba
1 / MHz 9.74 8.87 9.31

D1 / kHz 46.08 [46.05] 40.54 [40.52] 40.32 [40.28]

H1 / Hz -2.444 [-2.441] 0.039 [0.039] -4.001 [-4.004]

L1 / mHz 0.328 [0.326] -0.198 [-0.196] 1.508 [1.509]

K1 /µHz 0.037 [0.037] 0.001 [-0.002] -0.484 [-0.484]

σ1 / Hz 4.12 [3.92] 8.33 [10.12] 16.47 [15.73]

α1 / MHz 224.94 [224.89] 251.45 [251.36] 365.62 [365.50]

Best
1 / MHz 35795.13 [35794.93] 34161.90 [34162.30] 35000.95 [35001.20]

B
exp
1 / MHz 35792.3325(46)c

(n)Best
e [(a)Best

e ] / MHz 36193.65 [36193.34] 34575.79 [34576.06] 35535.38 [35535.45]
(a)Bexp

e / MHz 36194.3538(79)d

S0[S
a
0 ] /MHz 120.03 [120.00] 130.25 [130.21] 194.37 [194.30]

∆B0 / MHz 173.60 [173.53] 162.46 [162.40] 168.82 [168.75]

∆B0 − S0 / MHz 53.57 32.21 -25.55

a Caselli and Dore.16

b Hirao et al.21

c Lattanzi et al.13

d Dore et al.15
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TABLE IV: Spectroscopic parameters derived for H16O12C+, H18O12C+, H16O13C+, and D16O12C+ using nuclear masses.
Values shown in brackets were obtained in Paper I using atomic masses.

Parameter H16O12C+ H18O12C+ H16O13C+ D16O12C+

Be / MHz 44567.75 43156.82 42709.61 37877.31

Be − Ba
e / MHz 14.43 13.47 13.33 10.38

B0 / MHz 44525.06 43091.57 42665.27 38024.35

B0 − Ba
0 / MHz 14.31 13.35 13.23 10.42

D0 / kHz 113.83 [113.76] 106.02 [105.96] 104.21 [104.14] 93.64 [93.59]

H0 / Hz 0.076 [0.760] 0.579 [0.579] 0.619 [0.611] 2.306 [2.305]

L0 / mHz -0.046 [-0.046] -0.032 [-0.032] -0.034 [-0.034] -0.245 [-0.245]

K0 /µHz 0.025 [0.026]

σ0 / Hz 3.40 [4.30] 3.32 [3.77] 3.53 [3.41] 0.74 [0.88]

Best
0 / MHz 44744.06 [44743.93] 43305.20 [43305.74] 42875.92 [42876.36] 38193.18 [38193.20]

Bexp
0 / MHz 44743.9141(35)a 43305.969(35)b 42876.559(8)b 38193.1984(18)a

T2 /cm−1 243.67 [243.60] 241.15 [241.08] 243.30 [243.23] 176.60 [176.57]

B2 / MHz 44719.37 43252.36 42845.08 38349.08

B2 − Ba
2 / MHz 14.32 13.33 13.22 10.54

D2 / kHz 116.23 [116.15] 107.84 [107.78] 106.39 [106.33] 100.69 [100.63]

H2 / Hz 0.284 [0.284] 0.177 [0.177] 0.234 [0.235] 1.738 [1.734]

L2 / mHz 0.028 [0.028] 0.026 [0.026] 0.021 [0.021] -0.051 [-0.049]

K2 /µHz -0.011 [-0.012]

σ2 / Hz 8.90 [8.38] 6.48 [6.46] 6.16 [6.72] 0.77 [1.02]

q2 / MHz 517.25 [517.07] 489.50 [489.34] 475.91 [475.75] 512.35 [512.16]

qJ2 / kHz -20.66 [-20.66] -17.73 [-17.72] -17.80 [-17.79] -31.92 [-31.90]

qJJ
2 / Hz 1.485 [1.484] 1.205 [1.205] 1.189 [1.188] 3.024 [3.024]

qJJJ
2 / mHz -0.151 [-0.150] -0.118 [-0.118] -0.112 [-0.112] -0.375 [-0.378]

qJJJJ
2 / µHz 0.017 [0.016] 0.012 [0.013] 0.012 [0.011] 0.053 [0.056]

σq / Hz 1.28 [2.40] 2.67 [1.59] 2.32 [2.29] 1.74 [1.74]

α2 / MHz -194.31 [-194.30] -160.79 [-160.80] -179.81 [-179.81] -324.73 [-324.61]

Best
2 / MHz 44938.37 [44938.23] 43465.99 [43466.54] 43055.73 [43056.17] 38517.92 [38517.78]

Bexp
2 / MHz 44939.7878(38)a

T3 /cm−1 1901.59 [1901.32] 1862.26 [1862.01] 1858.88 [1858.63] 1840.02 [1839.77]

B3 / MHz 44166.72 42747.90 42327.67 37763.65

B3 − Ba
3 / MHz 14.13 13.18 13.05 10.31

D3 / kHz 115.47 [115.39] 107.37 [107.30] 105.47 [105.40] 94.06 [94.01]

H3 / Hz 1.064 [1.066] 0.724 [0.725] 0.722 [0.722] 2.354 [2.352]

L3 / mHz -0.245 [-0.251] -0.090 [-0.091] -0.067 [-0.067] -0.251 [-0.250]

K3 /µHz 0.112 [0.119] 0.026 [0.026] 0.012 [0.012] 0.026 [0.023]

σ3 / Hz 9.42 [8.36] 3.82 [6.08] 5.11 [5.39] 1.66 [5.76]

α3 / MHz 358.34 [358.16] 343.68 [343.50] 337.60 [337.44] 260.70 [260.59]

Best
3 / MHz 44385.72 [44385.77] 42961.52 [42962.23] 42538.32 [42538.93] 37932.49 [37932.58]

T1 /cm−1 3277.34 [3276.54] 3263.63 [3262.83] 3276.86 [3276.06] 2483.25 [2482.93]

B1 / MHz 44240.69 42835.12 42398.30 37728.43

B1 − Ba
1 / MHz 14.21 13.27 13.13 10.30

D1 / kHz 115.08 [115.01] 106.88 [106.81] 105.21 [105.14] 99.93 [99.88]

H1 / Hz 1.046 [1.045] 0.820 [0.820] 0.840 [0.839] 3.434 [3.434]

L1 / mHz -0.068 [-0.067] -0.058 [-0.058] -0.053 [-0.053] -0.421 [-0.425]

K1 /µHz 0.056 [0.058]

σ1 / Hz 15.13 [14.12] 13.43 [11.59] 6.71 [6.71] 2.13 [3.84]

α1 / MHz 284.37 [284.27] 256.45 [256.37] 266.97 [266.89] 295.92 [295.80]

Best
1 / MHz 44459.69 [44459.65] 43048.75 [43049.36] 42608.95 [42609.48] 37897.27 [37897.37]

Bexp
1 / MHz 44457.10(24)c

(n)Best
e [(a)Best

e ]/ MHz 44786.69 [44786.50] 43370.40 [43370.86] 42920.21 [42920.59] 38046.09 [38046.18]

S0[S
a
0 ] /MHz 127.04 [126.91] 139.27 [139.13] 122.18 [122.01] -46.42 [-46.41]

∆B0 / MHz 42.69 [42.57] 65.25 [65.13] 44.34 [44.23] -147.04 [-146.99]

∆B0 − S0 / MHz -84.35 -74.02 -77.84 -100.62

a Amano and Maeda.17

b calculated from the transition J = 0 → 1 observed by Gudeman and Woods.18,19

c Nakanaga and Amano.22
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lates a Bexp
0 of 41 409.994MHz. In Table VII on page

373 of his Ph.D. thesis,14 Warner, however, reports a
ground state rotational constant of 41 411.773MHz for
H18O13C+. This result can be obtained from the ob-
served rotational J = 2 → 3 transition only under the
assumption of Dexp

0 = 98.83 kHz. Interestingly, the latter
Bexp

0 and Dexp
0 values agree nicely with our results of Ta-

ble IV reported in Paper I, where Best
0 = 41 411.39MHz

and D0 = 96.64 kHz are given for H18O13C+.

A. Improving the equilibrium structure

The ground state vibrational correction ∆B0 to the
equilibrium rotational constant is derived from our cal-
culations as

∆B0 = Bth
e −Bth

0 , (2)

where Bth
e and Bth

0 are theoretical values of the rota-
tional constant at equilibrium and in the ground vibra-
tional state, respectively. The equilibrium geometry used
in Eq. (2) to evaluate Bth

e is the geometry corresponding
to the minimum of the CCSD(T)/cc-pVQZ potential en-
ergy surface. Combining ∆B0 of Eq. (2) with a ground-
state rotational constant Bexp

0 known from experiment,
we may derive a new estimate of the equilibrium rota-
tional constant Best

e for a given isotopic species as

Best
e = Bexp

0 +∆B0 . (3)

Knowing the experimental Bexp
0 constant for several iso-

topologues, the values for Best
e of Eq. (3) can be used to

determine the equilibrium re molecular structure. The
estimate Best

v for the effective rotational constant in the
vibrational state v is then

Best
v =Best

e −∆B0 − αv , (4)

where the vibration-rotation interaction constant αv is

αv = Bth
0 −Bth

v for v = 1− 3 . (5)

For a linear triatomic molecule HXY, the equilibrium
rotational constant Be is expressed in terms of Jacobi
coordinates r,R as

Be =
~
2

2 Ie
=

~
2

2 (µr r2e + µR R2
e)

, (6)

where the equilibrium distances re and Re stand for

re = re(XY) ,

Re = re(HX) +
mY

mXY
re(XY)

(7)

using mXY = mX +mY. The reduced masses µr and µR

are defined by

µr =
mX mY

mXY
and µR =

mH mXY

mHXY
, (8)

TABLE V: Equilibrium distances (in Å) of HCO+ and HOC+

derived using nuclear and atomic masses. Fit U refers to
results from an unweighted fit and DBPC refers to results
based on Ref. 15. See Section IIA for details.a

HCO+ re(HC) re(CO) re(HO)

atomic masses 1.091 981(7) 1.105 615(2) 2.197 60(1)

nuclear masses 1.091 80(3) 1.105 874(9) 2.197 67(4)

Fit U atomic 1.092 00(1) 1.105 609(3) 2.197 61(2)

Fit U nuclear 1.091 87(5) 1.105 85(1) 2.197 72(6)

DBPC atomic 1.092 04 1.105 58 2.197 62

DBPC nuclear 1.091 93(3) 1.105 816(8) 2.197 75(4)

HOC+ re(HO) re(CO) re(HC)

atomic masses 0.990 482(7) 1.154 468(2) 2.144 95(1)

nuclear masses 0.990 41(3) 1.154 692(7) 2.145 10(4)

Fit U atomic 0.990 50(2) 1.154 464(4) 2.144 96(2)

Fit U nuclear 0.990 46(7) 1.154 68(1) 2.145 13(7)

a Values in parentheses show one standard error to the last sig-

nificant digits of the distances from the least-squares procedure.

where mHXY = M is the total molecular mass. The ex-
plicit values of µR, µr obtained using the atomic ma and
nuclear mn masses are shown in Table I for the parent
HCO+ species. The atomic-mass values are larger by
approximately 0.03-0.05%, implying that the harmonic
wavenumbers for the nuclear-mass case are larger by ap-
proximately 0.01-0.03% (up to 1 cm−1).

The Be value of a single isotopologue is clearly in-
sufficient to uniquely determine re. The equilibrium
structures of HCO+ and HOC+ are therefore extracted
from a set of Be values for several isotopologues by
means of a Levenberg-Marquardt nonlinear least-squares
algorithm23 and using experimental uncertainties to com-
pute weights. The analytical expression of Eq. (6) for the
equilibrium rotational constant Be was used in combina-
tion with analytical expressions for the partial derivatives
of Be with respect to the geometric parameters re(HX)
and re(XY). The equilibrium bond lengths re(HX)
and re(XY) calculated by this procedure for HCO+ and
HOC+ are summarized in Table V, where we also show
re(HY) = re(HX) + re(XY). The results of the calcula-
tions using atomic masses are taken from Paper I. Rows
denoted by DBPC show the experimental re values for
HCO+ from the work of Dore and coworkers.15 We were
able to reproduce their re results, shown in TableXI of
Ref. 15, by using Be values from their Table X and atomic
masses (row DBPC atomic).24 Combining the Be values
of Dore et al. with nuclear masses, we calculated the
nuclear-mass counterparts (row DBPC nuclear).
Upon substitution of the atomic masses of the con-

stituent species with their nuclear counterparts, the
length re(HX) of the bond involving hydrogen decreases
by 1.8× 10−4 Å for HCO+ and by 7× 10−5 Å for HOC+,
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whereas the equilibrium bond length re(CO) increases
by 1.6 × 10−4 Å for HCO+ and by 2.3 × 10−4 Å for
HOC+ in Table V. The overall length re(HY) of the
cations is larger for the nuclear masses by approximately
1 × 10−4 Å. In other words, the effect of the substitu-
tion of the atomic masses with the nuclear masses is in
order of 10−4 Å for the equilibrium bond lengths and is
thus larger than accepted statistical uncertainties for re
shown in Table V.
The equilibrium bond distances of Table V are used to

calculate the equilibrium rotational constants, denoted
by (n)Best

e and (a)Best
e in the nuclear-mass and atomic-

mass case, respectively. The new estimates of the effec-
tive rotational constants Best

v are derived for v = 0−3 by
means of Eqs. (3) and (4). The values of Best

e and Best
v

are listed in Tables II-IV. They both agree with their
atomic-mass counterparts within 1.5MHz for HCO+ and
within 0.5MHz for HOC+.

Our estimates re(HX), re(CO) of Table V reproduce
the fitted Best

e values with root-mean-square (rms) de-
viations of 0.8 [0.2]MHz for HCO+ isotopologues and
of 0.5 [0.2]MHz for HOC+ isotopologues in the calcula-
tions using nuclear [atomic] masses, with a largest indi-
vidual difference of 1.7 [0.4]MHz for H13C18O+. In our
fitting procedure, experimental data coming from differ-
ent sources were employed, with experimental standard
deviations for Bexp

0 varying from 0.000 16 MHz (HCO+)
to 0.040MHz (HC18O+) in the case of the HCO+ cation.
To test the sensititity of our results to these values, we
also carried out unweighted nonlinear least-squares fits,
denoted by Fit U in Table V. The equilibrium distances
found in the original and Fit U differ by approximately
1× 10−5 Å. This difference is thus comparable with sta-
tistical uncertainties of re within one to two standard
deviations. In Fit U, the Best

e values of HCO+ isotopo-
logues are reproduced with a rms deviation of 0.5 [0.1]
MHz and a maximum individual deviation of 0.9 [0.3]
MHz for H13C18O+.

III. ROTATIONAL CONSTANTS AND THE
DETERMINATION OF MOLECULAR

STRUCTURE

The equilibrium geometry is the nuclear arrange-
ment corresponding to the minimum of the potential
energy surface for a given electronic state, computed
in the framework of the Born-Oppenheimer approxima-
tion. The experimental counterpart is the re structure.
This is a single geometric structure, which reproduces
with high accuracy the experimental equilibrium con-
stants derived by correcting the zero-point rotational
constants for vibrational effects.5 In the case of lin-
ear triatomic molecules, whose geometric arrangements
are described by two bond distances, two isotopologues
are required for the determination of the geometric pa-
rameters from the experimental (rotational) data. In
real vibrating-rotating molecules (real experimental sit-

uation), the ground vibrational state is described by a
wave function of some (sometimes also considerable) ex-
tent over close-to-equilibrium arrangements. Such a sit-
uation leads to an effective vibrationally averaged ro-
tational constant B0 different from the equilibrium Be

value. The zero-point rotational constants B0 are exper-
imentally available, but not Be.
Two traditional approaches of experimental spec-

troscopy for the determination of the molecular structure
are the r0 approach (the r0 structure), which directly
uses the B0 values, and the rs approach (the substitu-
tion structure), which employs the analytical solutions
of Kraitchman’s equations.4,25

The so-called r0 structure is computed from the zero-
point rotational constants B0. Whereas the equilib-
rium structure is well-defined and unique within the
Born-Oppenheimer approximation, this is not the case
with the concept of the r0 geometry. To exemplify
this issue, we provide the radial amplitude ∆r for the
ground vibrational state and several J values in TableVI.
There the radial amplitude ∆r is the difference between
the expectation value of the coordinate r = r(XY) in
the rovibrational state |n〉 and the equilibrium distance
re = re(XY),

∆(n)
r = ∆r = 〈n | r | n〉 − re . (9)

A quick glance at TableVI shows that ∆r is isotopologue-
dependent and J-dependent. The same also applies for
the expectation values 〈r〉. For a given isotopic variant,
∆r increases by approximately 5 × 10−4 Å for J = 15
with respect to the J = 0 result and decreases by ap-
proximately 5× 10−4 Å with respect to the result for the
parent molecule. In our rovibrational calculations, the
expectation values 〈r〉 are found to be almost unaffected
by the substitution of atomic masses by nuclear masses,
such that TableVI applies to both the atomic-mass and
nuclear-mass case.
In addition to the fact that the effective r0 structural

parameters are different for different isotopic forms, we
may also remember that

〈B〉 =
〈

~
2

2I

〉

6= ~
2

2 〈I〉 = RI (10)

from a mathematical point of view. This is relevant for
theoretical approaches. Whereas the integral 〈I〉 can be
solved analytically, the integral 〈B〉 is solvable only by
numerical means. To substantiate this issue, we com-
pare in Table VII the ground state rotational constant
B0 with the vibrationally averaged value 〈B〉 and with
RI for HCO

+ and DCO+. The values of RI are computed
using analytical integrals and the basis set expansion of
the full-dimensional wavefunction for J=0. In Table VII,
the quantity B0→1 is additionally shown, which is com-
puted from the ground-state energies E0(J, p) as

B0→1 = 1
2 [E0(J = 1, p = 1)− E0(J = 0, p = 0)] , (11)

where p stands for parity. The results for B0 are taken
from Tables II and III, respectively.
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TABLE VI: Amplitude ∆r (in Å) in the ground vibrational state of the isotopic variants of HCO+ and HOC+ with the total
rotational angular momentum J = 0, 5, 10, and 15.

HCO+ HOC+

species J = 0 J = 5 J = 10 J = 15 species J = 0 J = 5 J = 10 J = 15

HCO+ 0.00469 0.00475 0.00490 0.00517 HOC+ 0.00853 0.00864 0.00885 0.00922

HC17O+ 0.00464 0.00469 0.00485 0.00512 H17OC+ 0.00848 0.00858 0.00880 0.00911

HC18O+ 0.00459 0.00464 0.00480 0.00506 H18OC+ 0.00842 0.00848 0.00869 0.00906

H13CO+ 0.00453 0.00459 0.00475 0.00501 HO13C+ 0.00842 0.00853 0.00874 0.00906

H13C17O+ 0.00459 0.00464 0.00480 0.00506 H17O13C+ 0.00837 0.00842 0.00864 0.00901

H13C18O+ 0.00448 0.00453 0.00469 0.00496 H18O13C+ 0.00832 0.00837 0.00858 0.00895

DCO+ 0.00453 0.00459 0.00469 0.00485 DOC+ 0.00795 0.00800 0.00816 0.00842

DC17O+ 0.00448 0.00453 0.00464 0.00480 D17OC+ 0.00784 0.00790 0.00811 0.00837

DC18O+ 0.00443 0.00448 0.00459 0.00475 D18OC+ 0.00779 0.00784 0.00800 0.00827

D13CO+ 0.00443 0.00448 0.00459 0.00480 DO13C+ 0.00784 0.00790 0.00805 0.00832

D13C17O+ 0.00438 0.00443 0.00453 0.00469 D17O13C+ 0.00774 0.00779 0.00795 0.00821

D13C18O+ 0.00432 0.00438 0.00448 0.00464 D18O13C+ 0.00768 0.00774 0.00790 0.00816

TABLE VII: Various representations of the ground state ro-
tational constants computed for HCO+ and DCO+ using nu-
clear masses.

B0 B0→1 〈B〉 RI

HCO+

(MHz) 44391.37 44391.21 44245.40 44155.26

(cm−1) 1.48074 1.48073 1.47587 1.47286

DCO+

(MHz) 35861.59 35861.48 35743.61 35675.60

(cm−1) 1.19621 1.19621 1.19228 1.19001

For the vibrational ground state of HCO+, the vi-
brationally averaged moments of inertia is 14.166 uÅ2.
Compared to B0, the values for 〈B〉 and RI are smaller
by approximately 100 and 200MHz, respectively, what
amounts to 0.5 %. On the other hand, the value forB0→1,
computed according to Eq. (11) from the ground state en-
ergies for J = 0, 1 only, differ by 0.16 and 0.11MHz from
the B0 result for HCO+ and DCO+, respectively. This
finding leads us to the conclusion that Coriolis coupling
does not play an important role in the internal dynamics
of both HCO+ and DCO+. The comparison of the values
presented in Table VII also indicates that rovibrational
calculations, carried out even for only a modest number
of J values, may provide more useful results for B than
their vibrationally averaged counterparts obtained from
solely J = 0 computations.

The determination of structural parameters from the
experimental data is very often carried out by the em-

ployment of the moments of inertia, which are recipro-
cals of the rotational constants, Eq. (6). The positions
z1, z2, z3 of the aligned atoms H, X, Y in the reference
system with the origin in the center of mass of the parent
molecule HXY are explicitly

M z1 = −mXY x−mY y ,

M z2 = mH x−mY y ,

M z3 = mH x+mHX y ,

(12)

where x = r(HX) and y = r(XY). The difference ∆I
between the moments of inertia of two different isotopic
forms is then

∆I = I2 − I1 =(a2 − a1)x
2

+ (b2 − b1)x y + (c2 − c1) y
2 .

(13)

For explicit values of the parameters ai, bi, ci, see
Eq. (A4) of the Appendix. It is an easy matter to de-
rive for a simple substitution mi → m′

i and i = 1 − 3
that

∆I(mH → m′
H) =

m′
H −mH

M M ′
(mXY x+mY y)2 ,

∆I(mX → m′
X) =

m′
X −mX

M M ′
(mH x−mY y)2 ,

∆I(mY → m′
Y) =

m′
Y −mY

M M ′
(mH x+mHY y)2 ,

(14)

implying

z2i =
M ′

M (m′
i −mi)

∆I(mi → m′
i) . (15)

The latter equation is known as Kraitchman’s relation
for linear triatomic molecules.4 It provides the position
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zi of the ith atom with respect to the center of mass
of the parent molecule as a function of the moment-
of-inertia difference ∆I(mi → m′

i). From three known
z1, z2, z3 values, the bond distances are calculated as
r(HX) = x = z2 − z1 and r(XY) = y = z3 − z2. To com-
pute two distances of a linear triatomic molecule by
means of Eq. (15), we effectively need four B values avail-
able for the parent molecules HXY and three singly sub-
stituted species DXY, HX’Y, and HXY’.
Kraitchman’s equation of Eq. (15) is frequently used

for the estimation of the experimental equilibrium struc-
ture. Letting I1 and I2 be the moment of inertia of the
parent molecule and of the substituted species, respec-
tively, where

Ii = I
(0)
i =

~
2

2B
(i)
0

for i = 1, 2 , (16)

then

∆I(0) =I
(0)
1 − I

(0)
2 = I

(e)
1 − I

(e)
2 +DI

=∆I(e) +DI = ∆I .
(17)

In the case that the vibrational corrections for two iso-
topic species in the ground vibrational state are simi-
lar, the deviation DI in Eq. (17) will be small, so that
∆I(0) ≈ ∆I(e), implying that ∆I(0) may be used instead
of ∆I(e). The structure obtained in this fashion is known
as the substituted rs structure. Only under the condi-
tion of ∆I(0) ≈ ∆I(e), the rs structure will be a good
approximation of the re structure. The rm structure in-
troduced by Watson, derived by approximating the equi-
librium moment of inertia with 2Is − I0, is found less
satisfactory for hydrogen containing species,5 where Is is
the moment of inertia computed using the rs geometry.

Since two bond lengths of a linear triatomic molecule
can be always determined from two moments of inertia
available for two different isotopologues, we finally also
examine a pair determination of the molecular structure.
An analytic solution for the corresponding mathemati-
cal problem is provided in the Appendix. In the case
when experimental data are known for n isotopic species,
we can pair them in N = n(n − 1)/2 different ways,
yielding N pair solutions (xi, yi), where x = r(HX) and
y = r(XY) for i = 1, . . . , N . The mean pair values are

xap =
1

N

N
∑

i=1

xi and yap =
1

N

N
∑

i=1

yi . (18)

To quantify the spread of the pair solutions (xi, yi)
around the mean value (xap, yap), we introduce the aver-
age radius of the pair distribution dap as

dap =

√

√

√

√

N
∑

i=1

1

N

[

(xi − xap
1 )

2
+ (yi − yap2 )

2
]

. (19)

We will call the solution (xap, yap) a rap structure.

To correct for the rovibrational effects in B0, one needs
the effective rotational constants for the singly excited vi-
brational states and two isotopic forms in experimental
spectroscopy. Knowing the effective rotational constants
B1, B2, B3, one may derive the vibration-rotation interac-
tion constants α1, α2, α3, yielding the spectroscopic zero-
point vibrational correction as

S0 = 1
2 (α1 + 2α2 + α3) (20)

for linear triatomic molecules in the traditional spectro-
scopic approach. Therefrom the experimental equilib-
rium rotational constant follows as

(α)Bexp
e = Bexp

0 + S0 . (21)

We will denote by rα the equilibrium structure derived
from (α)Bexp

e . In electronic-structure program packages,
the expression of Eq. (21) has become a standard tool to
compute the zero-point rotational constant B0 from the
calculated equilibrium geometry (providing Be) and the
zero-point vibrational correction S0 computed according
to Eq. (20) by means of second order vibrational pertur-
bation theory.26 This spectroscopic model is effectively
based on the harmonic-oscillator-rigid-rotor description
as a zero-order picture.
In our approach used here and in Paper I, the ground

state vibrational corrections ∆B0 are computed accord-
ing to Eq. (2) as a difference between the rotational con-
stant Bth

e at equilibrium of the CCSD(T)/cc-pVQZ po-
tential energy surface and the rotational constant Bth

0 in
the ground vibrational state. The Bth

0 values are derived
from rovibrational energies computed for J = 0−15 by a
numerically exact full-dimensional quantum-mechanical
method. In addition to ∆B0, we also derived the
vibration-rotation interaction constants αv = Bth

0 − Bth
v

of Eq. (5) and used them to calculate the spectroscopic
correction S0 according to Eq. (20). The quantities ∆B0

and S0 are both shown in Tables II-IV. The difference
between ∆B0 and S0 is in order of 1MHz for the hy-
drogen containing forms of HCO+ in Table II. However,
∆B0 − S0 is as large as 50 and 100MHz for DCO+ and
DOC+ in Tables III and IV, respectively. In our calcu-
lations, the mass effect on ∆B0 and S0 is smaller than
0.2MHz.

A. Results

In the case when experimental data are available for
a series of isotopic variants, the determination of the
geometric parameters may proceed employing different
mathematical procedures. Nonlinear fitting algorithms
are expected to give the best over-all fit to all of the
rotational constants. Analytical solutions using Kraitch-
man’s relations are applicable for the parent molecule and
three singly substituted species. The geometry problem
can be also solved analytically for any pair of isotopic
variants. The rotational constants not included in the
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TABLE VIII: Structural parameters (in Å) obtained for HCO+ and HOC+ by means of Kraitchman’s relations. Root-mean-
square (rms) deviations are in MHz. Values shown in brackets for HCO+ are rms deviations for the rotational constants of all
eight isotopologues.

HCO+

source structure atomic mass nuclear mass

r(HC) r(CO) rms r(HC) r(CO) rms

B
exp
0 r

(0)
s 1.092 921 1.107 228 108.1 [101.3] 1.092 926 1.107 236 121.2 [113.5]

B
exp
0 + S0 r

(α)
s 1.098 720 1.104 852 32.5 [46.5] 1.098 732 1.104 862 19.8 [37.1]

B
exp
0 +∆B0 r

(e)
s 1.092 014 1.105 560 2.9 [2.7] 1.092 020 1.105 568 15.8 [14.8]

HOC+

source structure atomic mass nuclear mass

r(HO) r(CO) rms r(HO) r(CO) rms

B
exp
0 r

(0)
s 0.964 099 1.159 471 7.5 0.964 102 1.159 478 18.4

B
exp
0 + S0 r

(α)
s 0.984 741 1.155 069 52.8 0.984 759 1.155 071 40.2

B
exp
0 +∆B0 r

(e)
s 0.990 522 1.154 383 4.8 0.990 543 1.154 387 17.3

process of determining the geometry by analytical means
will generally be less well predicted, such that the re-
sulting structure will be a less balanced representation
compared to the structure from the nonlinear fits of all
available isotopologues.

A more serious obstacle to the derivation of an equilib-
rium structure is related to uncertainties which occur as
a necessary consequence of the effects due to zero-point
vibrations. We investigated this issue in practical terms
by considering the ground state vibrational corrections
given as ∆B0 of Eq. (2) and as S0 of Eq. (20).

The structural parameters of HCO+ and HOC+ de-
rived in different approaches are summarized in Tables
VIII and IX. The results are presented for both the
atomic-mass and nuclear-mass cases. The root-mean-
square (rms) deviation is employed as a measure of good-
ness of the derived bond lengths to predict the corre-
sponding set of rotational constants. Eight isotopic vari-
ants of HCO+ and four of HOC+ are considered.

Table VIII summarizes distances derived using
Kraitchman’s relations. The main isotopic forms of
HCO+ and HOC+ were chosen as parent species.
The four isotopic variants considered, for instance, for
the formyl cation were HCO+, DCO+, H13CO+, and
HC18O+. Three sets of data are studied using the ex-
perimental zero-point rotational constants Bexp

0 shown
in Tables II-IV. The values of Bexp

0 uncorrected for vi-
brational effects form the first set, yielding the substitu-

tion structure denoted by r
(0)
s in Table VIII. The second

set composed of Bexp
0 + S0 produces the r

(α)
s structure,

whereas the third set based on the values of Bexp
0 +∆B0

gives the r
(e)
s structure. For ∆B0 and S0, we use our the-

oretical values. Note that the structure r
(0)
s is commonly

called the rs structure in the spectroscopic literature.

The distances in Table VIII show negligible variations
upon the replacement of atomic masses with their nuclear
counterparts. This is to be expected from the mathe-
matical form of Kraitchman’s relation in Eq. (15), which
involves explicit mass dependence only through the fac-
tor fm = M ′/M (m′

i −mi). The difference between the
fm values computed using atomic and nuclear masses
is somewhat smaller than 1 × 10−5 u−1 for the studied
systems. To facilitate comparison between distances ob-
tained using the atomic and nuclear masses, the values
in Table VIII are given with six decimal places.

The rs distances in Table VIII exhibit a broad spread
of 0.006 and 0.026 Å for HCO+ and HOC+, respectively.
The large difference of approximately 6-7×10−3 Å be-

tween the r
(α)
s (HX) and r

(e)
s (HX) distances arises from

a large difference of 54 and 100 MHz between the S0

and ∆B0 values for DCO+ and DOC+ in Tables III
and IV, respectively. Compared to the equilibrium dis-

tances of Table V, the r
(e)
s (HX) bond length is longer by

3− 4× 10−5 Å and r
(e)
s (XY) shorter by 4− 8× 10−5 Å in

the atomic-mass case. These differences are in order of
10−4 Å for the nuclear-mass case since the rs distances
are nearly insensitive to the replacement of atomic masses
with their nuclear counterparts.

For given rs distances, rotational constants for all iso-
topologues were evaluated according to Eq. (6). The rms
deviations in Table VIII are thus a measure of goodness
of the approximation of the equilibrium rotational con-
stant by Bexp

0 , Bexp
0 + S0, and Bexp

0 + ∆B0 in the case

of the r
(0)
s , r

(α)
s , and r

(e)
s structure, respectively. Among
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FIG. 1: Pair solutions (xi, yi)a and (xi, yi)n for HCO+ ob-
tained for the atomic and nuclear masses, respectively, from
B

exp
0 + ∆B0. Explicit values of re(a), r

ap
e (a) for the atomic

masses and re(n), r
ap
e (n) for the nuclear masses are found in

Table IX. For the definition of rape (n)red, see the main text.

the three representations in Table VIII, the r
(e)
s distances

perform the best, providing the smallest rms deviation.
Root-mean-square deviations are somewhat larger for the
nuclear-mass case than for the atomic-mass case.

The three sets of data involving the Bexp
0 , Bexp

0 + S0,
and Bexp

0 +∆B0 values are now used in combination with
a nonlinear least-squares procedure, yielding the r0, rα,
and re distances, respectively. These results are summa-
rized in Table IX. In Fit 4 there, we employ the data
for the four HCO+ isotopologues used to derive Kraitch-
man’s solutions of Table VIII. The re distances of Table
V are repeated in bold face in Table IX. For the r0 and
re structures, we also give the mean pair solutions of
Eq. (18), denoted by rap0 and rape , respectively. The mean
radius of the pair distribution is defined by Eq. (19). In-
spired by the approach of Kraitchman, we also tested
a fitting procedure for the differences of rotational con-
stants. These results are labelled with rdiff0 and rdiffe .
In addition to the rms deviations for the rotational con-
stants, Table IX also shows rms errors for the differences
of the rotational constants in brackets. For our data sets,
the total number of pairs and differences is 28 for HCO+

and 6 for HOC+.

All of the pair solutions for Bexp
0 +∆B0 of HCO+ are

graphically displayed in Fig. 1. The pair solutions derived
in the atomic-mass case lie in xi ∈ (1.0910 Å, 1.0929 Å)
and yi ∈ (1.1054 Å, 1.1059 Å). The pair solutions ob-
tained using nuclear masses are distributed over a
larger space, occupying xi ∈ (1.0892 Å, 1.0944 Å) and
yi ∈ (1.1054 Å, 1.1067 Å). Most of the solutions are
aligned or nearly aligned for both the atomic-mass and
nuclear-mass cases in Fig. 1. Two (xi, yi)n pairs for the

nuclear masses falling out of line are circled in Fig. 1.
Eliminating them from the averaging process, the mean
value (xap

e , yape ) is changed from (1.09239 Å, 1.10575 Å)
to a value of (1.09213 Å, 1.10558 Å). This solution is de-
noted by rape (n)red in Fig. 1.
The estimates re for the equilibrium bond distances

reproduce the rotational constants Bexp
0 +∆B0 with a

rms deviation of about 0.2 [0.8] MHz in the atomic-mass
[nuclear-mass] case, as seen in Table IX. This implies
that Bexp

0 +∆B0 approximates fairly well the equilib-
rium rotational constant Bexp

e . Rms deviations of ap-
proximately 5MHz are seen for the r0 parameters, which
are computed from Bexp

0 . In the case of the rα structure,
the results for Bexp

0 + S0 are reproduced by the linear-
molecule model of Eq. (6) with rms deviations of about
20MHz for HCO+ and 2MHz for HOC+.
The three r0, rα, re geometries in Table IX are dif-

ferent. For HCO+, the distance r0(HC) is shorter by
0.0006 Å and rα(HC) longer by 0.004 Å than re(HC),
whereas r0(CO) is longer by 0.004 Å and rα(CO) shorter
by 0.0008 Å than re(CO). In the case of HOC+, the rα
geometry deviates somewhat less than the r0 geometry
from the re results. Interestingly, the pair solution rape
and the solution rdiffe , obtained by fitting the differences
of the rotational constants, agree with each other within
1−2×10−5 Å. They both, however, differ by 1-2×10−4 Å
from the re structure.
Another salient feature is observed by comparing the

results for r0, rα, re from Fit 4 of Table IX with the values

of r
(0)
s , r

(α)
s , r

(e)
s derived from Kraitchman’s relations in

Table VIII. In all three cases, rms deviations are smaller
for the geometric parameters obtained by nonlinear least-
squares fits, which thus appear more appropriate for the
determination of molecular structures.

IV. FINAL REMARKS

Accurate determination of the equilibrium geometry
of molecules is considered as one of the most important
goals of spectroscopy. Geometric parameters are unam-
biguously determined only from actual equilibrium rota-
tional constants Be, which, however, are not accessible
experimentally. Experimental spectroscopy thus takes
on other views of the situation. If there is no data on
excited vibrational states, two traditional approaches to
determining the molecular structure are the r0 approach,
which uses the zero-point rotational constants B0 di-
rectly, and the rs approach, which uses Kraitchman’s
relations in combination with B0. In the case when infor-
mation is available on singly excited vibrational states,
the zero-point rotational constants B0 are corrected for
the vibrational effects with the help of the spectroscopic
correction S0 of Eq. (20) to give

(α)Bexp
e of Eq. (21), yield-

ing the rα structure. The three sets r0, rs, rα of geometric
parameters are generally different. Modifications of data
sets, such as a change of a parent molecule in the Kraitch-
man’s approach, may introduce additional inconsisten-
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TABLE IX: Various structural parameters (in Å) obtained for HCO+ and HOC+ by means of a nonlinear least-squares technique.
Root-mean-square (rms) deviations are shown in MHz. For more details, see the main text.a

HCO+

structure atomic mass nuclear mass

r(HC) r(CO) rms dap r(HC) r(CO) rms dap

r0 1.091 42(22) 1.109 32(6) 5.0 [5.7] 1.091 23(24) 1.109 59(7) 5.6 [6.4]

r0 (Fit 4) 1.091 72(5) 1.109 27(1) 3.9 [4.5] 1.091 56(6) 1.109 52(2) 4.3 [5.0]

r
ap
0 1.095 47 1.108 46 15.1 [19] 7.1×10−3 1.095 77 1.108 62 16.9 [21] 7.8×10−3

rdiff0 1.095 30(10) 1.109 92(2) 92 [1.8] 1.095 54(11) 1.110 25(2) 102 [2.1]

rα 1.096 1(30) 1.104 8(9) 20.4 [31] 1.095 9(30) 1.105 1(9) 20.5 [31]

rα (Fit 4) 1.099 29(2) 1.104 197(7) 1.2 [1.6] 1.099 15(2) 1.104 449(5) 0.9 [1.2]

re 1.091 981(7) 1.105 615(2) 0.2 [0.2] 1.091 80(3) 1.105 874(9) 0.8 [0.9]

re (Fit 4) 1.091 989(1) 1.105 614(3) 0.1 [0.1] 1.091 839(8) 1.105 867(2) 0.6 [0.7]

rape 1.092 09 1.105 59 0.5 [0.5] 3.5×10−4 1.092 39 1.105 75 2.4 [2.7] 1.1×10−3

rdiffe 1.092 104(7) 1.105 634(1) 2.9 [0.1] 1.092 34(1) 1.105 957(2) 13 [0.4]

HOC+

structure atomic mass nuclear mass

r(HO) r(CO) rms dap r(HO) r(CO) rms dap

r0 0.965 32(20) 1.159 31(5) 4.5 [7.1] 0.965 23(21) 1.159 53(6) 4.4 [7.0]

r
ap
0 0.959 80 1.160 18 21 [28] 0.016 0.960 24 1.160 32 19 [26] 0.017

rdiff0 0.968 0(12) 1.160 2(4) 87 [10] 0.968 3(12) 1.160 5(4) 99 [10]

rα 0.985 48(6) 1.154 07(2) 2.3 [3.1] 0.985 40(4) 1.154 30(1) 2.0 [2.7]

re 0.990 482(7) 1.154 468(2) 0.14 [0.18] 0.990 41(3) 1.154 692(7) 0.5 [0.6]

rape 0.990 69 1.154 43 0.7 [1.1] 2.5×10−4 0.991 14 1.154 56 2.5 [3.6] 9.1×10−4

rdiffe 0.990 62 1.154 51 4.5 [0.06] 0.990 92 1.154 85 16 [0.1]

a Values in parentheses show one standard error to the last significant digits of the distances from the least-squares procedure.

cies among the values predicted by a chosen method.14

The concepts of the equilibrium geometry and the vi-
brational correction to the zero-point rotational constant
are well founded in theoretical approaches, such that the-
ory may provide useful assistance to experiment in the
evaluation of the equilibrium structure. To achieve as ac-
curate as possible corrections to Be in the real situation
of a vibrating and rotating molecule, theoretical meth-
ods for numerically exact quantum-mechanical calcula-
tions are desirable since only then we can have a proper
full-dimensional physical answer for a given potential en-
ergy surface in the Born-Oppenheimer approximation. In
the present work and previously in Paper I, we point to
the difference between the spectroscopic correction S0

of Eq. (20) and the zero-point correction ∆B0, defined
in Eq. (2) literally as a difference between the rotational
constant at equilibrium and the rotational constant in
the ground vibrational state. In connection with this,
we also observed that rovibrational calculations, carried
out even for lowest J values, may provide useful values of

B0. Unlike variational methods, vibrational second-order
perturbational approaches are capable of providing only
the spectroscopic correction S0, which is not always suf-
ficient to evaluate the molecular structure. The concept
of the re structure is generally useful. Its applicability
in the case of quasi-linear molecules and weakly bonded
complexes deserves, however, some attention.

Another issue relevant for the determination of molec-
ular geometries is related to the answer on the question
’which masses are vibrating or rotating in a molecule?’, to
cite the title of a paper by Kutzelnigg.6 This question ap-
pears natural in connection with charged molecular sys-
tems, like HCO+ and HOC+, which lack an electron.

Several choices of mass are commonly used in nu-
clear dynamics computations. The atomic masses
have became standard in connection with the Born-
Oppenheimer approximation because the atomic masses
are expected to minimize the deviation of the employed
electronic-structure approach with respect to complete
theory. For the Born-Oppenheimer approximation plus
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adiabatic contributions, the nuclear masses are consid-
ered more adequate physically. Rescaled masses or
distance-dependent masses are also encountered in some
applications.6,27,28 Systematic improvements of the com-
putational approaches are possible only in conjunction
with the nuclear masses.
In experimental studies, the atomic masses are tacitly

in use,5 so that an explicit reference regarding the em-
ployed masses is rarely given. In the case of HCO+, we
may note that Bogey et al.12 made use of the atomic
masses. In addition to the atomic masses, Warner14 also
performed several tests aiming at electron mass correc-
tions in the framework of the rs structure.

In the present work, we found that the replacement
of the atomic masses with the nuclear masses affects the
equilibrium bond lengths in order of 10−4 Å. This effect is
larger than the accepted statistical uncertainties of 10−5

Å for the re parameters, such that the mass issue deserves
some attention in molecular studies. We, however, also

observed that the equilibrium structure obtained by the
employment of the atomic masses is statistically some-
what better than the nuclear-mass counterpart. Regard-
ing concrete mathematical approaches to solve for the
equilibrium structure, a nonlinear fit of all available data
is recommened as more trustworthy than other possible
variants.

Dedication

This work is dedicated to William Klemperer. In 1970,
Klemperer proposed the assignment of the X-ogen transi-
tion to HCO+, leading to the identification of this species
as the first cation in the interstellar environment and
marking the beginning of the fascinating field of inter-
stellar chemistry.
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APPENDIX A: ANALYTICAL SOLUTION FOR
BOND LENGTHS FROM TWO KNOWN

MOMENTS OF INERTIA FOR THE CASE OF
LINEAR TRIATOMIC MOLECULES

For linear triatomic molecules HXY, the equilibrium
moment of inertia is explicitly

Ie = µr r
2
e + µR R2

e , (A1)

where the bond lengths re, Re are given by Eq. (7) and the
reduced masses µr, µR by Eq. (8). Letting x = re(HX)
and y = re(XY), Eq. (A1) is rewritten to

Ie =µr x
2 + µR

[

x+
mY

mXY
y

]2

=
mH mXY

M
x2 + 2

mH mY

M
xy +

mY mHX

M
y2 ,

(A2)

in fact

I =a x2 + b x y + c y2 , (A3)

using

a =
mH mXY

M
, b = 2

mH mY

M
, c =

mY mHX

M
, (A4)

and M = mH +mX +mY.
The moment of inertia is the reciprocal of the rota-

tional constant, Eq. (6). Knowing Be for two different
isotopic forms of a linear triatomic molecule, two values

I
(1)
e and I

(2)
e become available. The equilibrium distances

x and y can then be calculated by solving the following
system of equations

d1 =a1 x
2 + b1 x y + c1 y

2 ,

d2 =a2 x
2 + b2 x y + c2 y

2 ,
(A5)

where d1 = I
(1)
e and d2 = I

(2)
e . Multiplying the first equa-

tion by b2 and substracting the second equation multi-
plied by b1, we obtain

(a1 b2 − a2 b1)x
2 = d1 b2 − d2 b1 + (b1 c2 − b2 c1) y

2 . (A6)

Substituting into Eq. (A5), we find that

(a1 b2 − a2 b1)x y =a1 d2 − a2 d1

− (a1 c2 − a2 c1) y
2 .

(A7)

We square both sides of the equation and use Eq. (A6)
to replace x2, yielding

Ay4 +B y2 + C = 0 , (A8)

where

A =(a1 b2 − a2 b1)(b2 c1 − b1 c2) + (a1 c2 − a2 c1)
2 ,

B =(b1 d2 − b2 d1)(a1 b2 − a2 b1)

+ 2(a1 d2 − a2 d1)(a2 c1 − a1 c2) ,

C =(a1 d2 − a2 d1)
2 .

(A9)

The two solutions for y2 are thus

y21/2 =
−B ±

√
D

2A
(A10)

with the determinant D = B2−4AC given explicitly by

D = (a1 b2 − a2 b1)
2
[

(b1 d2 − b2 d1)
2 (A11)

+4(a1 d2 − a2 d1)(c1 d2 − c2 d1)] .

The two solutions of Eq. (A10) for y2 provide two results
for y, taken as positive square roots since y is a distance.
For each possible y, we use Eq. (A6) to determine x as a
positive square root of x2. The procedure may thus lead
to two different solution pairs (x, y). This is a conse-
quence of the squaring of Eq. (A7), which may introduce
new solutions. Direct substitution in Eq. (A5) should be
used to verify which of the two pairs is appropriate as a
solution. In the case that both solutions are eligible with
respect to Eq. (A5), additional criteria are needed. For
instance, resulting values for x and y may physically be
inacceptable when x and/or y are too short or too long
from the chemical point of view.

The front term (a1 b2 − a2 b1) in the determinant D of
Eq. (A11) is explicitly

a1 b2 − a2 b1 =2
mH m′

H

M M ′
(mX m′

Y −mY m′
X) . (A12)

In the case of a terminal substitution mH → m′
H, when

mX = m′
X and mY = m′

Y, the term (a1 b2 − a2 b1) be-
comes zero, implying the solution for y2 as

y21/2 =
B

2A
=

a1 d2 − a2 d1
a2 c1 − a1 c2

. (A13)

The corresponding solution for x2 follows from Eq. (A5).
Taking the positive square roots of x2 and y2, we obtain
a unique solution of Eq. (A5) for the case of the terminal
substitution mH → m′

H.


