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Abstract 9 

While Multi-objective Optimization (MOO) has provided many methods and tools for 10 

solving design problems, food processes have benefitted little from them. MOO 11 

encompasses the identification of performance indicators, process modelling, preference 12 

integration, trade-off assessment, and finding the best trade-offs. In this review, the use 13 

of these five elements in the design of food processes through MOO is analysed. A 14 

number of studies dealing with food processes MOO have been identified. Even though 15 

these studies improve the design process, they often approach MOO in a simplified and 16 

insufficiently rationalized way. Based on this review, several research issues are 17 

identified, related to the improvement of the different models and methods, and to the 18 

development of more holistic MOO methods for food processes. 19 
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1. Introduction 22 

In food process engineering, most design problems are aimed at several objectives, 23 

which can often be contradictory. Thus, maximizing food product quality (texture, 24 

nutrients concentration, flavour…) is often in conflict with process performance 25 

objectives, such as minimizing energy consumption, maximizing profit, or ensuring 26 

safety in the case of heat treatments. For the last two decades, solving multi-objective 27 

design problems has been a major concern as sustainable development practices also 28 

need to be integrated in the design process. Many kinds of objectives can be defined by 29 

the decision-maker, all with potential antagonistic effects, e.g. maximizing one has the 30 

effect of minimizing one or several others. 31 

 32 

To solve multi-objective design problems, different kinds of methods have been 33 
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developed, with the earliest being gradient-based methods and experiments-based 34 

methods. Gradient-based methods, such as the method of Lagrange multipliers, are 35 

based on the resolution of differentiable equation systems, and although they yield fast 36 

computation times, they converge toward local optima only, which may not be global 37 

optima. Experiments-based methods, and more specifically Response Surface 38 

Methodology, were and remain a common optimization approach in the food processing 39 

industry (Banga et al., 2008). Since then, new optimization methods for multi-objective 40 

problems have been developed, which are able to efficiently identify global optima. They 41 

have been grouped under the term “multi-objective optimization (MOO) methods”. 42 

 43 

MOO is a general methodology aimed at identifying the best trade-off(s) between 44 

several conflicting objectives. Numerous applications in engineering can be found, from 45 

the design of a single mechanical part (Collignan et al., 2012) to the optimization of a 46 

worldwide supply chain (Wang et al., 2011). MOO consists in a) a multi-objective 47 

processing method, to transform the original multi-objective problem into a solvable 48 

problem, and b) an optimization algorithm, to search for trade-off solutions to the 49 

multi-objective problem (Collette and Siarry, 2013). 50 

 51 

A multi-objective processing method requires the following elements, in the food 52 

processes framework: 53 

1) Optimization objectives and associated indicators. The decision maker defines 54 

objectives, i.e. changes that the decision-maker(s) wish(es) to cause in the 55 

process (profit increase, productivity increase, environmental impact decrease…), 56 

and these changes are quantified or described by suitable performance 57 
indicators (margin, yield, carbon dioxide emissions…) (Church and Rogers, 58 

2006). Indicators are also called by the term “criteria”, which can itself be used as 59 

an equivalent to “objectives” (Craheix et al., 2015). In this work, the terminologies 60 

“objectives” and “indicators” will be used. 61 
2) A predictive food process model: the effect of different values of the design 62 

variables (input variables, i.e. operating conditions, equipment size, process 63 

structure...) on the indicators is predicted by a process model. Thus, the different 64 

design solutions available can be evaluated. The predictive model should provide 65 

a satisfying level of prediction accuracy, while optimizing efficiently for reasonable 66 

computation times. 67 
3) A preference model, where the decision-maker preferences and expert 68 

knowledge are integrated. Preferences may be specified at two different levels 69 

(figure 1): i) objectives may be weighted according to their relative significance for 70 

the decision-maker and/or qualified experts; ii) desirability functions may be used 71 

to integrate satisfaction levels of experts according to indicator values. The 72 

decision-maker may have sufficient knowledge to specify preferences at both 73 

levels. However, it is considered in this work that the experts have more 74 

qualifications to specify preferences on indicator values, based on a good 75 

scientific and/or technical knowledge of the process and the installation context. 76 
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 77 

Figure 1: Relationships between objectives, indicators, and preference integration 

 78 
4) A selection method to choose the “best trade-off” by sorting, ranking or scoring 79 

the design solutions available. The selection method generally consists in 80 

aggregating preferences and indicators to build an objective function for 81 

optimization, but may also in consist in different approaches. 82 

 83 

Regarding the optimization algorithm, it integrates these four elements to search for 84 

trade-offs among possible design solutions. 85 

 86 

Numerous methods and algorithms can be used to build a multi-objective processing 87 

method to be combined with an optimization algorithm. Detailed taxonomies and 88 

information on these methods can be found in reference books such as (Chen and 89 

Hwang, 1992; Collette and Siarry, 2013; Ehrgott, 2005; Miettinen, 1998). It is also 90 

noteworthy that predictive food process models and preferences models are used in 91 

single-objective (mono-objective) optimization, in order to obtain a single performance 92 

indicator. These elements are not specific to MOO, and a detailed comparison of single- 93 

and multi-objective optimization can be found in Rangaiah et al. (2015). 94 

 95 

In this context, the application of MOO to food processing was studied, that is the 96 

transformation of biological raw materials by one or several unit operations to produce 97 

edible food products. The investigation field of this review was restricted to MOO for 98 

food process design, which excludes: 99 

 process control (or closed loop optimal control, as defined in Banga et al. (2008) 100 

– see for example Trelea et al. (1997)); 101 

 product formulation (or mixture design - see for example Chen et al. (Chen et al., 102 

2004)); 103 

  model parameter optimization. 104 

The design problems included were: 105 

 selection of fixed or variable operating conditions (i.e. open loop optimal control – 106 

Banga et al. (2008)); 107 
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 equipment sizing; 108 

 number and structure of unit operations in the process. 109 

A number of articles have been reviewed to discuss the methods used by the authors to 110 

perform MOO. From these studies it was established that despite the advanced 111 

development of MOO as a generic design methodology, the tools and methods of MOO 112 

have not yet fully reached the area of food process design: 113 

 MOO is infrequent in the design of food processes compared to chemical 114 

processes: around 40 articles on MOO application in food processing had been 115 

published in scientific journals before 2009 (Abakarov et al., 2009), whereas 116 

around 360 papers regarding MOO in chemical engineering applications had 117 

been published until mid-2012 (Rangaiah and Bonilla-Petriciolet, 2013). Several 118 

authors (Banga et al., 2003; Trystram, 2012) have identified two major 119 

hindrances: i) physical properties, and consequently quality parameters of food 120 

materials, are difficult to predict because of the complexity of food materials; ii) 121 

many food process models are unsuitable for optimization purposes, since they 122 

have been developed to understand the behaviour of food materials as biological 123 

reactors (with reaction kinetics and transfers), rather than predict its behaviour as 124 

a function of process control variables and size. 125 

 Most studies focus on the optimization of operating conditions for design or 126 

process control; many of them concern heat treatment processes. In contrast only 127 

a few MOO studies concentrate on the integrated design of food processes, 128 

where both unit operations structure and equipment sizing are optimized (see for 129 

example Nishitani and Kunugita (1979)). 130 

 Most MOO design studies published are limited to the production of the Pareto 131 

front, i.e. the set of trade-off solutions for the process design (Kiranoudis and 132 

Markatos, 2000; Kopsidas, 1995; Nishitani and Kunugita, 1979, 1983; Stefanis et 133 

al., 1997; Yuen et al., 2000 …). Multi-criteria decision making (MCDM) methods, 134 

which help to select the best trade-off amongst Pareto-efficient solutions, are 135 

seldom applied in these studies. MCDM methods can help include the 136 

preferences of the decision-maker in the design process, and rank the possible 137 

solutions to identify one (or a small set of) “best” trade-off(s) for process design. 138 

 Very few design approaches are systemic: most optimization objectives are 139 

evaluated with “raw” indicators of process performance (nutrient retention, energy 140 

consumption, processing time…) and do not involve the interactions of the 141 

process with its environment (environmental impact based on LCA, overall 142 

economic profit, nutritional interest…). 143 

Thus, the potential for developing more advanced MOO methods and associated tools 144 

for the design of food processes is high: most studies only partially use the constituent 145 

elements of MOO, while a variety of methods and tools are available to perform MOO. 146 

Hence it seemed relevant to study and review these methods and tools along with their 147 

use for food process design. 148 

In this paper, a critical review of multi-objective optimization methods which have 149 

been used in food process design studies is developed. The main purpose is to 150 

demonstrate how design methods engineering can solve design problems in food 151 

processing, which however requires a choice among existing MOO methods. 152 

The different sections of this review match the aforementioned elements which 153 
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constitute a MOO method: 154 

 Section 2 is a critical analysis of indicators which describe design objectives; 155 

 Section 3 briefly reviews process models used for MOO of food processes; 156 

 Section 4 deals with the integration of preferences in decision-making; 157 

 Section 5 handles the methods used in the literature to select the best 158 

solutions; 159 

 Section 6 explores optimization algorithms for MOO from the perspective of 160 

methods engineering; 161 

 Section 7 describes some holistic MOO methods, which include all elements for 162 

MOO (process indicators and model, preference model, ranking method, 163 

optimization algorithm) and discusses research issues. 164 

2. Design indicators 165 

2.1. Raw and integrative indicators 166 

The indicators required for optimization are produced by a set of more or less complex 167 

models, based on knowledge of the process. The indicators are mostly quantitative, but 168 

may possibly be qualitative (one product more appreciated than another, soft or hard 169 

texture, sanitary risk present or absent, etc.); the latter case is not considered in this 170 

work. A quantitative indicator may be an integer variable, but is more generally a real 171 

variable in the field of food processing. Process sizing parameters, such as a number of 172 

effects of an evaporator or number of cleaning cycles, may be represented by an 173 

variable integer, which is common in the field of chemical processing (see for example 174 

Morandin et al. (2011) and Rangaiah and Bonilla-Petriciolet (2013)). Quantitative 175 

indicators can be constructed simply using the physical variables (or chemical, 176 

biochemical, biological variables) of the process, or be generated by an economic model 177 

or environmental impact model, making it possible to quantify global objectives 178 

(especially sustainability). In this work, the indicators are categorized in two families: 179 

 Raw indicators, i.e. variables of physical, chemical, biochemical or even biological 180 

origin, calculated using the process model, such as the product treatment 181 

temperature, its sensorial qualities (texture, colour…), steam consumption, 182 

retention rate of a compound of interest, etc. 183 

 Integrative indicators, which combine raw indicators referring to different (but 184 

linked) phenomena into a unique variable, according to scientific and/or technical 185 

or statistical principles, or even rule-like principles. They are constructed from 186 

economic, environmental, social, or even product quality models. They 187 

correspond to the definition of the composite indicators given by Von Shirdning 188 

(2002). 189 

 190 

In the case of raw indicators, interpretation i.e. the relationship between indicators and 191 

objectives, is left to the decision-maker, which assumes a degree of expertise in the 192 

process under study. A decision-maker not specializing in the process will be less 193 

capable of analysing the solutions proposed, since the raw indicators may not be explicit 194 

in terms of the objectives sought.  Thus, the exergy proposed by Nishitani and Kunugita 195 
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(1983) requires an ability to understand this concept in terms of environmental impact; 196 

the “head kernel” yield for optimizing rice drying by Olmos et al. (2002) cannot quantify 197 

the economic implications of this indicator. Similarly, selecting a raw indicator could 198 

partly conceal, or even bias, the information required for evaluating the objectives. Thus 199 

Stefanis et al. (1997) opted to characterize the environmental impact in wastewater by 200 

BOD (Biological Oxygen Demand), which represents a highly partial view of the 201 

environmental impact that a process may have. In Nishitani and Kunugita (1979), the 202 

exchange surface contributes only partially to the cost of the evaporator, and so appears 203 

to be an incomplete indicator in terms of the defined economic objective. 204 

Conversely, raw indicators can be tailored to specific contexts, where the process 205 

objectives can be expressed directly by physical variables derived from the process 206 

model: in Yuen et al. (2000), the objective is to remove alcohol from beer while 207 

minimizing loss of chemicals associated with taste, which is explicitly expressed by an 208 

“alcohol removal” indicator and an “extract removal” indicator. In particular in the case of 209 

explicitly known product quality objectives, they can be expressed by selecting certain 210 

nutritional compounds, such as in Tarafdar et al. (2017), where the indicators are 211 

contents of nutritional compounds of interest. 212 

 213 

On ther other hand, integrative indicators can link the process physical variables to 214 

variables of interest/which are meaningful for the decision-maker: a return on investment 215 

time for example will be easier to interpret for an investor than an investment cost and 216 

an operating cost taken separately. Sebastian et al. (2010) defined a total cost of 217 

ownership, bringing together the operating cost (electricity and fluids consumption) and 218 

an investment cost (purchasing and manufacturing costs), which can be used to quantify 219 

what the equipment costs over a planned service life of twenty years. 220 

However, due to the construction of the associated functions, integrative indicators entail 221 

a risk of bias in the interpretation. Firstly, the models used may be subject to debate; in 222 

the case of impact scores based on Life Cycle Analysis (LCA) for example, modelling of 223 

the environmental impacts varies according to the impact calculation methodologies, and 224 

there is not always an established consensus on these models (Hauschild et al., 2008). 225 

Then, the weighting of different kinds of indicators (greenhouse effect and 226 

eutrophication, texture and colour…) for the purpose of aggregating them in an 227 

integrative indicator may also entail a bias. Finally, constructing integrative indicators 228 

assumes use of data which is sometimes uncertain; thus it is not always possible, at the 229 

scale of a process situated in a larger system (e.g. factory), to predict its profitability or 230 

maintenance cost. 231 

 232 

The indicators encountered in the various articles studied in this work are rarely 233 

integrative indicators. While aggregating raw indicators can produce an indicator which 234 

is meaningful for the decision-maker, the way in which they are grouped induces a risk 235 

of information loss. Thus, raw indicators of major significance in design choices may find 236 

themselves concealed by the integrative indicator, as in the case of the SAIN-LIM 237 

indicator which conceals the effect of certain nutrients on the overall score (Achir et al., 238 

2010). So the development of relevant indicators means finding a balance between an 239 
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excessive number of raw indicators, which is difficult to interpret and discuss, and an 240 

integrative indicator, which would cause major information loss through aggregation. 241 

2.2. Relevance of indicators 242 

Besides the advantages and shortcomings of raw and integrative indicators, the 243 

question of choice of indicators is an issue of interest, firstly in terms of the meaning 244 

given to the indicators. There are numerous approaches for constructing more or less 245 

integrative indicators which are meaningful for the decision-maker in view of their 246 

objectives. An overview of some of these approaches is proposed here, via the four 247 

dimensions of sustainability of food engineering processes: economic sustainability and 248 

product quality, which are the most frequently encountered dimensions, plus 249 

environmental and social sustainability. 250 

 251 

Economic evaluation of processes makes it possible to establish the cost that they 252 

represent, and/or their profitability in the shorter or longer term. In the context of 253 

optimization, it must be possible to predict their operating cost and the investment they 254 

represent; there are correlations for predicting investment as a function of sizing 255 

choices, the best known of which is from Guthrie (1969). Benchmark works provide 256 

values for the parameters of this correlation (Maroulis and Saravacos, 2007; Turton et 257 

al., 2008). Based on the economic and financial information on the process and the 258 

company, it becomes possible to construct integrative economic indicators, the best 259 

known of which are the internal profitability rate, return on investment time, discounted 260 

income, net present value and net cumulative cash flow (Chauvel et al., 2001; Turton et 261 

al., 2008). Other approaches are being developed, such as thermo-economics, which 262 

associates a cost with exergy (a measure of energy quality to determine energy 263 

degradation in the system), to evaluate economic feasibility and profitability (Rosen, 264 

2008). In keeping with the “life cycle” approach, Life Cycle Costing (LCC), where the 265 

financial, environmental and social costs are factored into the life cycle as a whole 266 

(Norris, 2001), is another approach under development. Like thermo-economics, it still 267 

requires construction of databases large enough for the economic indicators proposed to 268 

evaluate the food engineering processes. 269 

 270 

Food quality needs to be described through a holistic perspective which covers all 271 

consumer requirements. Among several possible approaches, an attempt was made by 272 

Windhab (2009) to provide such holistic perspective, known by the acronym PAN: 273 

Preference (organoleptic and usage properties), Acceptance (religious, cultural, 274 

GMO…), Need (health, nutrition...). However, the indicators used in the literature 275 

primarily relate to the P and N dimensions. Only fragmentary elements of food quality 276 

are dealt with, which were classified in three categories: 277 

 Nutritional indicators are generally nutritional or anti-nutritional compound 278 

degradation kinetics (Abakarov et al., 2009; Garcia-Moreno et al., 2014 …) and 279 

are thus raw indicators, although there are some integrative indicators in the form 280 

of algebraic equations. Hence, among other approaches, the SAIN-LIM indicators 281 

were developed in an attempt to classify foods by their nutritional value, by 282 

quantifying their favourability or unfavourability for human health (Darmon et al., 283 
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2007). However, they are ill-suited to optimization, as they are insufficiently 284 

sensitive to the process control parameters (Achir et al., 2010; Bassama et al., 285 

2015). 286 

 Organoleptic quality is described either by denaturing kinetics (or conversely 287 

development kinetics) of compounds relating to organoleptic appraisal of a 288 

product (Gergely et al., 2003; Kahyaoglu, 2008; Yuen et al., 2000 …), or by 289 

sensory scores. These scores directly express the appraisal of product quality by 290 

the consumer, but they are based on a posteriori evaluation (Abakarov et al., 291 

2013; Singh et al., 2010 …). Sensory scores can be aggregated to produce 292 

integrative indicators of overall appraisal, provided they have been evaluated on a 293 

common scale (e.g. 1 to 9 from worse to best). 294 

 Finally, sanitary quality, which is generally a feasibility constraint rather than an 295 

indicator for optimization, is described by microorganism mortality kinetics, or 296 

development kinetics of compounds hazardous to humans (Arias-Mendez et al., 297 

2013; Garcia-Moreno et al., 2014). 298 

 299 

Quality indicators represent a particularly topical problem, with growing market demands 300 

in terms of health, and consequently a research issue for modelling the links between 301 

process, nutrition and health. 302 

 303 

The issue of environmental impact indicators is particularly topical.  While there are 304 

numerous environmental impact approaches, they are all debatable in terms of 305 

relevance regarding the process studied, and of over- or under-estimating the impact. 306 

Three of the best known environmental impact evaluation methods are listed below: 307 

 Life Cycle Analysis (LCA) is the most commonly used method, and most 308 

comprehensive for evaluating the environmental impacts of a system (Azapagic et 309 

al., 2011; Jacquemin et al., 2012; Manfredi et al., 2015). The indicators produced 310 

are calculated based on the inventory of emissions and resources consumed 311 

throughout the life cycle of the product in question, LCI (Life Cycle Inventory). An 312 

LCI analysis methodology is employed to convert the emissions surveyed from 313 

the entire system in question into environmental impact scores, using 314 

characterization factors specific to the method used. LCA is a widely described 315 

and analysed method (Jolliet et al., 2010), but rarely used in optimizing food 316 

engineering processes: it was partially used in the study by Romdhana et al. 317 

(Romdhana et al., 2016), where only the Global Warming Potential (GWP) 318 

indicator, relating to climate change, was used, and in the works of Stefanis et al. 319 

(1997), which defined several indicators comprising air pollution, water pollution, 320 

solid wastes, photochemical oxidation, and stratospheric ozone depletion. 321 

Although standardized and comprehensive, LCA contains possible biases caused 322 

by the choice of inventory analysis method, functional unit, system and impact 323 

allocation. 324 

 Thermodynamic methods, based on the second law of thermodynamics, quantify 325 

changes of thermodynamic state in the system under study, making it possible to 326 

identify “degradations” caused by the process and thereby quantify the impact. 327 

For example, the exergetic analysis, which quantifies quality loss of the energy 328 

entering the system, i.e. destruction of exergy; this makes it possible to determine 329 
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the “available energy” in outgoing currents in the form of “exergetic efficiency”, 330 

which is used as an environmental impact indicator (Ouattara et al., 2012). Used 331 

in Nishitani and Kunugita (1983), this seems to be the most developed 332 

thermodynamic method, though there are still insufficient thermodynamic data to 333 

be able to generalize its application. 334 

 The Sustainable Process Index (SPI) is an indicator measuring the environmental 335 

impact in terms of surface of the planet used to provide goods or services 336 

(Steffens et al., 1999). Assuming that the sole external input into the system is 337 

solar energy, any process occupies a more or less large fraction of the Earth’s 338 

surface for its workings “from cradle to grave” (raw materials, energy, personnel, 339 

environmental emissions...). Thus, a low SPI will indicate an efficient process. 340 

This approach provides a sole indicator, independent of modelling environmental 341 

damage, but it lacks data for the area attributed to each substance or process, 342 

and there are inconsistencies when the use of fossil or mineral resources is 343 

analysed (Hertwich et al., 1997). 344 

Mention may be made of other methods, such as the WAR (Waste Reduction) algorithm, 345 

and the IChemE indicators, which are both (like LCA) based on using impact factors, 346 

and the AIChE metrics developed for petrochemical processes, though these cannot be 347 

used to evaluate the potential damage. 348 

 349 

Finally, the social dimension of sustainability is not represented in the literature studied 350 

for this work, since it is hard to quantify at the process design stage. The concept of 351 

social LCA is relatively recent (early 2000s), suffers among other things from a lack of 352 

data (Norris, 2014), and has hitherto been applied to fields such as industrial 353 

management and product development (Jørgensen et al., 2008); only a few works 354 

(Schmidt et al., 2004) mention consideration of social objectives in the field of processes 355 

for comparative studies. True, indicators such as job creation, safety and nuisance 356 

generation have been proposed (Azapagic et al., 2011), but they often relate to the 357 

operational phase, and are difficult to associate with indicators in the preliminary design 358 

phase. Employment could be a relevant indicator for processes, for example via the 359 

number of total local jobs (You et al., 2012), depending for example on the quantity of 360 

labour required by each piece of equipment included in the process. 361 

 362 

Thus, the choice from among all these indicators affects the meaning given to the 363 

optimization, but also the results. Indeed, the results derived from the optimization of the 364 

same process are dependent on the decision-maker’s objectives, and more generally on 365 

the specific context of the optimization study. By way of example, the mass of the 366 

equipment, used to quantify its transportability in Sebastian et al. (2010), would not be a 367 

relevant indicator for a fixed process in a factory. Thus it is clear that the ranking of a 368 

solution is closely linked to the mathematical construction of the indicators, hence the 369 

usefulness of considering their relevance. Achir et al. (2010) for example showed that 370 

the number of nutrients factored into the SAIN-LIM indicator affects the ranking of a 371 

product by this indicator. Yet to our knowledge, no study has taken an in-depth look into 372 

the subject, as the indicators are pre-selected, and not questioned thereafter. So 373 

evaluation of the relevance of the indicators for optimization is a relevant research 374 

question, but a difficult task. 375 
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3. Models for multi-objective optimization  376 

Although there are optimization approaches without models (especially sequential 377 

experimental strategies such as the simplex method), the exploration of various 378 

scenarios, and the need to rank them to identify the best (especially if the question is to 379 

find a compromise between several objectives), it would seem that optimization 380 

definitely requires numerical models. 381 

For food and biological processes, there are numerous long-standing modelling 382 

approaches. Table 1 presents and categorizes the approaches listed in the literature. 383 

These process model construction and validation methods present various 384 

characteristics, and may be classified in three categories (Banga et al., 2003; Perrot et 385 

al., 2011; Roupas, 2008): knowledge-driven models (“white box” type), which are derived 386 

from the physical laws governing the behaviour of the process; data-driven models 387 

(“black box” type), which are solely based on empirical data; and hybrid models (“grey 388 

box” type), which are a combination of the two. 389 
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Table 1: Process model types 390 

 391 
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White box models, also known as “mechanistic” models, are now capable of addressing 392 

various scales (from molecular to macroscopic), making it possible to produce just as 393 

great a variety of indicators. Purely mechanistic models are uncommon, since the links 394 

between molecular and macroscopic scales are still difficult to establish. Various 395 

approaches have been proposed which take into account prediction of phase changes in 396 

food matrices with the SAFES methodology (Systematic Approach for Food Engineering 397 

Systems; Fito et al. (2007)), but in which information requirements on the systems to be 398 

modelled go beyond current knowledge (Trystram, 2012). The models considered in this 399 

work as knowledge-driven use well-known laws, within specific domains: 400 

 Some white box models relate to heat treatment in a container. The classic 401 

equations of diffusion and convection of mass and heat, as well as the 402 

degradation kinetics of compounds of interest, are used to describe the 403 

phenomena occurring in the container. 404 

 The works of Rodman and Gerogiorgis (2017) consider only part of the chemical 405 

reactions occurring during fermentation, which makes it possible to use generic 406 

kinetic parameters. 407 

 Modelling of heat exchangers, with or without phase change, is abundantly 408 

covered in the literature, especially in chemical engineering. This means that it 409 

can be applied to food engineering processes, but using empirical correlations for 410 

the exchange coefficients specific to the food products. Thus Sharma et al. (2012) 411 

designed an evaporator treating milk, while Sidaway and Kok (1982) developed a 412 

heat exchanger sizing program for heat treatment. 413 

 Yuen et al. (2000) modelled the performance of a beer dialysis module, including 414 

the molecular scale in the solute transfer rate calculation. Although simplified, this 415 

is the closest model to a purely mechanistic model. 416 

 417 

White box models are often characterized by long calculation times, inherent in the 418 

partial derivative equations which have to be solved. Although computing power aids 419 

simulation, the most complex models are not necessarily the most appropriate for multi-420 

objective optimization. That is why model reduction techniques are proposed to create 421 

quick tools, containing all the degrees of freedom with optimization at the core, and 422 

which are sometimes broken down into hybrid (grey box) models - quick, efficient and 423 

simple to employ. 424 

 425 

Black box models are based on experimental or compiled data, and require approaches 426 

which employ model parameter identification algorithms to be determined once the 427 

mathematical structure has been chosen. There are countless examples of modelling 428 

approaches in the literature; Response Surface Methodology (RSM) is the most 429 

common in food processing, particularly for modelling osmotic dehydration (Abakarov et 430 

al., 2013; Arballo et al., 2012; Corzo and Gomez, 2004; Eren and Kaymak-Ertekin, 2007; 431 

Singh et al., 2010; Themelin et al., 1997; Yuan et al., 2018), in which the complex 432 

mechanisms involved (transfer through vegetable cell membranes) are well-suited to the 433 

black box approach. The field of possible modelling approaches is wide, also 434 

encompassing Artificial Neural Networks (Asgari et al., 2017; Chen and Ramaswamy, 435 

2002; Izadifar and Jahromi, 2007; Karimi et al., 2012), gene expression programming 436 

(Kahyaoglu, 2008), fuzzy logic, pure algorithms, etc.  The main advantage of these black 437 
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box models is probably the calculation speed, which enables use of a wide variety of 438 

optimization algorithms. Nonetheless, these modelling approaches are often very data-439 

hungry (and demanding in terms of data quality), especially when a random dimension is 440 

present in at least one of the indicators. In addition, black box models are limited by their 441 

ability to cover all the influencing variables, and if one of the variables is not taken into 442 

consideration, the whole work needs to be redone. Finally, due to the fact that the 443 

modelling is based on incomplete or non-existing prior knowledge, extrapolation is 444 

impossible or hazardous, and in this case confidence in the results obtained is generally 445 

low. 446 

 447 

Improvements to black box models are designed and applied when knowledge based on 448 

expert opinion or experimental results is used. This knowledge makes it possible to 449 

describe a priori a black box models structure, which entails at least some degree of 450 

robustness after identification of the parameters. Numerous graph-based models enable 451 

such approaches to be used (e.g. Bayesian graphs, dynamic or not, fuzzy graphs); see 452 

for example Baudrit et al. (2010) and the review of Perrot et al. (2011). The modelling 453 

approach used in Sicard et al. (2012) combines a mechanistic model with expert 454 

knowledge to model the system dynamic. Thus in many cases, a compromise between a 455 

first principle (white box) model based on explicit knowledge, and coupled black box 456 

models is available, resulting in the creation of hybrid (grey box) models. For example in 457 

Olmos et al. (2002), a mathematical model for transfer into a rice grain was combined 458 

with empirical models of transfer coefficient and of quality deterioration. One of the 459 

advantages of these models is their applicability on various scales, or ability to 460 

contribute to multi-scale modelling, which is a major challenge for food engineering 461 

processes.  462 

 463 

There is a great variety of modelling approaches, which is why it is important to be able 464 

to evaluate the model quality in terms of optimization, yet there are practically no 465 

analysis methods that have been developed to this end.  Vernat et al. (2010) proposed 466 

rating the quality of a model by four aspects, united under the acronym “PEPS”: 467 

 Parsimony: a model must be as simple as possible, which is quantified by the 468 

number of variables and mathematical relationships. This aspect could be 469 

supplemented by an execution time indicator for compatibility with optimization; 470 

 Exactitude (accuracy): the distance between the results derived from the model 471 

and the experimental measurements/observations must be as low as possible. 472 

This aspect touches on the concept of physical (or chemical, biological) 473 

robustness, which means that whatever the simplification employed, the physical 474 

laws and the consequent behaviour of the model are still conserved; 475 

 Precision: the uncertainty over the results derived from the model must be as low 476 

as possible; 477 

 Specialization: the restriction of the model’s field of application must be minimal. 478 

Two additional aspects could be added to the PEPS framework: 479 

 The identifiability of unknown model parameter values (transfer coefficient, 480 

activation energy of a reaction...) is validated. 481 

 Sensitivity is established (and quantified) between the degrees of freedom for 482 

optimization and the key variables. 483 
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Model quality analyses are often limited to exactitude (accuracy), by comparison with 484 

experimental results, and to the sensitivity of the model’s responses to the operating or 485 

sizing parameters. Hence the process models used are often developed specifically for 486 

a unit operation or a process (Diefes et al., 2000), which means a high degree of 487 

specialization. The development of more generic food engineering process models, 488 

using IT tools able to easily evaluate model performances, would make it possible to 489 

establish a logic of model quality compliance for optimization. 490 

 491 

Once the indicators have been defined (section 2) and the process model is operational 492 

(section 3), a method for selecting the best compromise must be chosen. This method 493 

must be able to integrate the preferences of the decision-maker and/or experts in 494 

evaluating the solutions. Multi-criteria analysis, which employs multiple criteria decision 495 

analysis (MCDA) methods (also known as multi-criterion decision making – MCDM – or 496 

multiple attribute decision making - MADM), refers to methods able to address this 497 

issue. The following sections propose a review of methods of integrating preferences 498 

and methods of identifying the best-performing solutions, used in the food engineering 499 

literature. 500 

4. Integrating preferences 501 

Preferences apply to the indicator values and to the comparative significance of the 502 

objectives. These preferences may be integrated before or after the optimization 503 

process, or indeed during the process, i.e. interactively. Hence there are methods to 504 

integrate these preferences in order to make the decision-making process more rational. 505 

The articles reviewed in which the preferences are integrated via specific methods have 506 

been classified in table 2, depending on whether the preferences are on the indicators, 507 

the significance of the objectives, or whether they are integrated interactively. 508 

 509 
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Table 2: Preference integration methods 510 

Preference 
level 

Methods References [Product & process type] 

Preferences 
on indicator 
values 

Desirability function: 
Harrington 

Sebastian et al. (2010) [Wine evaporation] 

Desirability function: 
Derringer 

Arballo et al. (2012) [Pumpkin, kiwi, pear osmotic 
dehydration]; Corzo and Gomez (2004) [Sweet melon 
osmotic dehydration]; Eren and Kaymak-Ertekin (2007) 
[Potato osmotic dehydration]; Kowalski and Ganjya 
(2018) [Pea extrusion]; Lespinard et al. (2015) 
[Pumpkin pasteurization]; Karimi et al. (2012) 
[Wormwood leaves drying]; Taheri-Garavand et al. 
(2018) [Banana convective drying] 

Sigmoid desirability 
function 

Raffray et al. (2015) [Fish hot-smoking] 

Desirability function 
not given (use of 
software) 

Alam et al. (2010) [Indian gooseberry osmotic 
dehydration]; Azarpazhooh et al. (2012) [Apple osmotic 
dehydration]; Kahyaoglu (2008) [Pistachio nut roasting]; 
Noshad et al. (2012) [Quince dehydration process]; 
Vieira et al. (2012) [Guava osmotic dehydration]; Yadav 
et al. (2012) [Peach osmotic dehydration] 

Preferences 
on objectives 

AHP weighting Abakarov et al. (2013) |Carrot osmotic dehydration] 

Ordinal ranking: 
lexicographic ordering 

Erdoğdu and Balaban (2003) [Food product thermal 
processing] 

Interactive 
methods 

NIMBUS Hakanen et al. (2007) [Glucose-fructose separation] 

 511 

The preferences may relate to the values adopted by the indicators. They originate from 512 

expert knowledge, functional analysis of the process to be designed, data mining, 513 

market studies... Their usefulness is based on: 514 

 Reducing the search space for possible solutions, by proposing desired valves 515 

(upper and lower) associated with each indicator. This may prove particularly 516 

useful in the case of raw indicators, for which context-specific limitations may be 517 

integrated; thus for example in Sebastian et al. (2010), the maximum acceptable 518 

mass of the equipment makes it possible to evaluate the transportability objective 519 

of the equipment. 520 

 Favouring certain indicator values over others, by means of desirability functions. 521 

Desirability functions convert the value of an indicator into a dimensionless variable of 522 

between 0 and 1, known as “satisfaction index”, which quantifies the satisfaction of the 523 

decision-maker on the performance of the indicator. They require the determination of a 524 
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high value for the indicator (associated with an upper or lower desirability value) and a 525 

low value (associated with a lower or upper desirability value, respectively), in order to 526 

demarcate the desirability domain. The most commonly used functions in the literature 527 

(Arballo et al., 2012; Corzo and Gomez, 2004; Eren and Kaymak-Ertekin, 2007; 528 

Lespinard et al., 2015) are those from Derringer (1980), one able to express increasing 529 

or decreasing desirability (one-sided), and the other to express maximum desirability in 530 

one domain, and decreasing when an indicator moves away from this domain (two-531 

sided). There are other forms of desirability function, in various mathematical forms, 532 

such as from Harrington (1965), used in Sebastian et al. (2010), and the sigmoid 533 

function (Raffray et al., 2015). All these functions lead to normalized indicators 534 

(expressed on a common scale), which can facilitate ranking the solutions by 535 

aggregating the scores. The choice between the different existing functions depends on 536 

how the desirability values are seen, as a function of the values of the indicator under 537 

study. Thus for example, the functions from Derringer (1980) strictly demarcate the 538 

indicator’s domain of variation, while the sigmoid function from Raffray et al. (2015) 539 

remains discriminant in the vicinity of the domain under study. 540 

 541 

The decision-maker may also formulate preferences over the relative significance of 542 

their objectives, i.e. on the comparative significance of the indicators. This may involve 543 

weighting the objectives, or ranking them in order of significance. If the decision-maker 544 

is faced with a multitude of objectives, it may be difficult to rationally and consistently 545 

attribute the weights. That is why there are methods to help the decision-maker to 546 

prioritize the objectives: the AHP method (Analytic Hierarchy process – Saaty (1990)) for 547 

example, which designates a method even capable of ranking the solutions, includes a 548 

step of defining the weights by comparing the objectives (or indicators) in pairs, is used 549 

in Abakarov et al. (2013). A score of between 1 and 9 is attributed to each objective 550 

depending on its significance compared to every other objective, and the results are 551 

aggregated using a given formula to provide a numerical value for the weight of each 552 

objective. Other methods use pairwise comparison, a non-exhaustive list of which is 553 

given in Siskos and Tsotsolas (2015). Ranking the objectives in order of significance 554 

does not require priorization methods. It has been used by Erdoğdu and Balaban (2003) 555 

and named “lexicographic ordering”. This approach seems uncommon, since most 556 

decision-making aid and optimization methods require quantification of the significance 557 

of the objectives for calculating the objective functions. Otherwise, lexicographic 558 

ordering of the indicators must be implemented in the optimization algorithm, as is the 559 

case in Erdoğdu and Balaban (2003). Another possibility is to use a lexicographic 560 

approach to produce a weighting (Sebastian et al., 2010): the objectives are ranked by 561 

significance, and a mathematical function attributes a weight to each objective according 562 

to its level of significance. This approach is similar to the SMARTER method (Edwards 563 

and Barron, 1994), and to other hybrid approaches of this type, such as: the Simos 564 

method (Figueira and Roy, 2002; Simos, 1990a, 1990b), where cards are used to order 565 

the objectives and quantify their relative significance, and the SWING method, in which 566 

the objectives are ranked based on solutions with the best possible value for one 567 

indicator, and the worst possible value in all the others. Interested readers can find a 568 

detailed review of weighting methods in Wang et al. (2009). 569 

 570 

Finally, there are optimization methods in which the decision-maker formulates their 571 
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preferences through an iterative design process, in which solutions are presented to 572 

them. These so-called interactive methods generally proceed in three phases (Coello, 573 

2000): 574 

1. Calculate a Pareto-efficient solution; 575 

2. Put together the decision-maker’s preferences on this solution, and its possible 576 

improvements; 577 

3. Repeat steps 1 and 2 until the decision-maker is satisfied. 578 

The advantages of this type of method lie mainly in the low requirement for calculations 579 

(few solutions calculated in each iteration), the absence of need for an overall 580 

preferences diagram, and the possibility for the decision-maker to correct their 581 

preferences and therefore learn through the optimization process (Taras and 582 

Woinaroschy, 2012). Conversely, it is assumed that the decision-maker has the 583 

necessary time and capacities to take part in the decision-making process, and that the 584 

information supplied to the decision-maker is comprehensible and relevant (Miettinen, 585 

1998). Although a substantial number of interactive optimization methods are available 586 

(Collette and Siarry, 2013; Miettinen, 1998; Miettinen and Hakanen, 2009… ), only 587 

Hakanen et al. (2007) have used them, with the NIMBUS method (Miettinen and 588 

Mäkelä, 1995, 2006). In NIMBUS, when a solution is presented to the decision-maker, 589 

the latter specifies for each indicator how they would like it to evolve - for example if an 590 

indicator needs to be improved, is satisfactory, or may be downgraded - and these 591 

preferences are used to converge toward the most satisfactory possible solution for the 592 

decision-maker. 593 

 594 

If the optimization problem encountered has not been solved by an interactive method, 595 

the preferences integration methods (desirability functions, weighting methods and 596 

ranking methods for objective) prove useful in providing a framework for formulating the 597 

preferences. To this end, the desirability function best suited to the objectives to be 598 

optimized must be chosen, in particular preventing an indicator from adopting 599 

undesirable values. The choice of weighting method meanwhile will depend primarily on 600 

the user’s affinity with one method or the other, and the ease with which they can 601 

formulate their preferences. 602 
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5. Selection methods 603 

The quantified preferences of the decision-maker may then be used to select the most 604 

acceptable solution for the decision-maker. So in the case of an optimization problem, 605 

this involves constructing a function or a mathematical criterion able to evaluate the 606 

performances of the solutions generated by the process model. Yet it is also possible 607 

that the decision-maker will be unable to formulate preferences, or that they are not 608 

provided, in the absence of a decision-making context for example. That is why the 609 

reviewed articles are classified in two major categories: 610 

 “No information” (Table 3): in the absence of information from the decision-maker, 611 

it is possible to calculate a relevant set of solutions (“Sorting / Filtering”), which 612 

can then be compared in a decision-making context, or to select a solution 613 

anyway without reference to the decision-makers formulated preferences 614 

(“Ranking with weight elicitation”); 615 

 “Preferences expressed” (Table 4): the decision-maker’s preferences are 616 

expressed, so a solution acceptable under the decision-maker’s criteria can be 617 

selected. 618 

 619 
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Table 3: Selection methods – no information from the decision-maker 620 

 621 
622 



20 

Table 4: Selection methods – preferences of the decision-maker(s) are expressed 623 

 624 

625 
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5.1. No information 626 

If the decision-maker’s preferences cannot be formulated, the approach most commonly 627 

used in the literature is obtaining the Pareto front, i.e. a larger or smaller set of non-628 

dominated solutions. The concept of Pareto efficiency or dominance is illustrated in 629 

figure 2, where the Pareto front covers all the solutions which are not inferior to any 630 

solution at any point (i.e. for each indicator). Thus many authors have opted for this 631 

approach (Abakarov et al., 2009; Kiranoudis and Markatos, 2000; Kopsidas, 1995; 632 

Massebeuf et al., 1999; Nishitani and Kunugita, 1979…) for the purpose of providing 633 

Pareto efficient design solutions uncoupled from any context, on which a decision-maker 634 

can formulate their preferences. So there is no bias, hence it is possible to optimize 635 

without a priori knowledge of the decision-maker’s preferences (Massebeuf et al., 1999), 636 

since an initial sort is carried out by eliminating the dominated solutions. However, this 637 

method entails the risk of generating a large number of Pareto-efficient solutions 638 

(Raffray et al., 2015), or even absurd solutions for the decision-maker, due to the low 639 

solution filtering capacity (Scott and Antonsson, 1998). Indeed, a solution which is 640 

extremely poor under one of the indicators may be among the non-dominated solutions, 641 

but could be useless as a design solution. In addition, as identified by several authors 642 

(Hadiyanto et al., 2009; Hakanen et al., 2007; Subramani et al., 2003), Pareto efficient 643 

solutions may be presented to the decision-maker in graphic form for two or three 644 

indicators, but interpretation becomes difficult after three. 645 

 646 

 647 
 648 

 
Figure 2: Graphic representation of a Pareto front for two 
indicators (yi and yj). The solutions are designated by the 

symbols Si (Collignan, 2011) 
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Another possibility, making it possible to go beyond the Pareto front while maintaining as 649 

neutral an approach as possible, is to use an aggregation function which eliminates 650 

weighting of the objectives (“weight elicitation” - Wang et al. (2009)). Thus it is possible 651 

to calculate the weighted sum, definitely one of the simplest and most commonly used 652 

aggregation functions, with the normalized indicators, assuming equal weight for each 653 

indicator. In Erdoğdu and Balaban (2003), the weighted sum became a simple “objective 654 

sum” (Marler and Arora, 2004). Another neutral function, the geometric mean, is used in 655 

several works (Corzo and Gomez, 2004; Kahyaoglu, 2008; Vieira et al., 2012). Product 656 

aggregation functions, like the geometric mean, are said to be more “aggressive” than 657 

sum functions (Quirante, 2012), since a low value for one indicator will have a big impact 658 

on the total score, and consequently better discrimination of the compromise solutions. 659 

Another possible approach is calculating the distance (Euclidian distance, with two or 660 

more dimensions) from “utopian” or “ideal” solutions; in the TOPSIS method (“Technique 661 

for Order Preference by Similarity to Ideal Solution”) used in Madoumier (2016), the 662 

solutions are ranked by a function which aggregates the distance of a given solution 663 

from the “ideal” solution (comprising the best values for each indicator) and from the 664 

“anti-ideal” solution (comprising the worst values for each indicator), with the best 665 

solutions evidently being the closest to the former and the furthest from the latter. A 666 

shortcoming of these aggregation functions is their compensatory logic, i.e. a high value 667 

for one indicator may counterbalance a low value for another indicator (Collignan, 2011). 668 

To offset this shortcoming, there are so-called “conservative” aggregation functions (Otto 669 

and Antonsson, 1991), such as minimum aggregation (Raffray et al., 2015): the score of 670 

a solution is represented by the lowest value among its indicators. So maximizing this 671 

score comes down to selecting the “least worst” of all the solutions. According to the 672 

same logic, maximum aggregation gives the score of a solution as being the best value 673 

among its indicators, but this logic is not suited to a design context (Scott and 674 

Antonsson, 1998). 675 

5.2. Preferences expressed 676 

If the decision-maker’s preferences are expressed, they can be used to more finely filter 677 

a set of solutions. Within the framework of RSM modelling (Response Surface 678 

Methodology), a graphic method of filtering the response surfaces was developed by 679 

Lind et al. (1960): the overlaid contour plots method comprises overlaying the contour 680 

plots for the various indicators, the value of which is determined according to the 681 

decision-maker’s preferences, in order to isolate a zone in which the indicator values are 682 

most satisfactory. Used with success by several authors (Annor et al., 2010; Collignan 683 

and Raoult-Wack, 1994; Ozdemir et al., 2008; Singh et al., 2010), this graphic method 684 

does however lose some efficiency when the number of design variables is greater than 685 

two (Khuri and Mukhopadhyay, 2010), and when the optimization requirements are more 686 

complex (Myers et al., 2016). Some authors (Alam et al., 2010; Arballo et al., 2012) use 687 

in addition an MADM based on desirability functions to select the best solution from 688 

those filtered. Another method, this time based on using tables (known as the “Tabular 689 

method”), is used in Abakarov et al. (2013). Its principle is to rank the values adopted by 690 

each indicator according to whether they must be maximized or minimized. Hence each 691 

row in the table no longer corresponds to one solution. This then enables the decision-692 

maker’s preferences to be applied to the indicators to eliminate the undesirable values. 693 
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If the remaining values correspond to proposed solutions, these are adopted. The risk 694 

with this type of approach is that if there is no solution corresponding to the preferences 695 

on the indicators, it forces the decision-maker to revise their requirements downward. 696 

 697 

To obtain a ranking of solutions or select the best compromise, the decision-maker’s 698 

preferences may be integrated into the aforementioned aggregation functions, in the 699 

form of weighting. The most classic are the weighted sum, used in Asgari et al. (2017), 700 

Hadiyanto et al. (2008a; 2008b) and Sidaway and Kok (1982), and the weighted 701 

geometric mean (or weighted product) used in four studies (Arballo et al., 2012; Eren 702 

and Kaymak-Ertekin, 2007; Lespinard et al., 2015; Sebastian et al., 2010). Proposed by 703 

Derringer (1994), the geometric mean is used in the four studies to aggregate 704 

normalized indicators by means of desirability functions. A potential shortcoming of the 705 

weighted geometric mean is that the meaning given to the weights is less intuitive than 706 

in a weighted sum, since the indicators between them have an exponential relative 707 

significance instead of a proportional relative significance (Collignan, 2011). However, it 708 

makes it possible to eliminate solutions where an indicator adopts a very low value or 709 

zero, under an “aggressive” strategy as mentioned above. Besides these “primary” 710 

aggregation functions (as per Marler and Arora (2004)), it is possible to adopt more 711 

complex aggregation strategies, at least two of which have been identified within this 712 

work: 713 

 Integration strategy within a more complex decision-making aid framework, such 714 

as the AHP method employed in Abakarov et al. (2013): the steps for determining 715 

the weights, set out in section 4, lead to a weighted sum aggregation. 716 

 “Mathematical” strategy, aimed at increasing the complexity of the aggregation 717 

functions. An example is the function derived from an optimization method known 718 

as “loss-minimization method” (Equation 1), corresponding to the weighted sum 719 

(weight wi) of variables defined as the relative difference between an indicator 720 

(Qi) and its optimal value (Qi*) (Gergely et al., 2003). This function requires prior 721 

single-objective optimization of the indicators, to obtain their optimal value. 722 

 723 

 724 

 725 

 726 

 727 

The aggregation functions mentioned above belong to full aggregation approaches, 728 

characterized by the synthesis of several indicators into a single score, which can be 729 

distinguished from so-called partial aggregation approaches or outranking approaches 730 

(Brans and Vincke, 1985). The latter are based on construction of binary relationships 731 

between solutions, based on the decision-maker’s preferences (Wang et al., 2009). 732 

Hence it is possible to do without an overall aggregation function, but it is also 733 

necessary to be able to compare the solutions in twos. This means that partial 734 

aggregation methods are applicable only when a sufficiently small set of solutions has 735 

been generated. Thus in Massebeuf et al. (1999), the best solution is selected after 736 

obtaining Pareto efficient solutions. The partial aggregation method employed in 737 

Massebeuf et al. (1999) is constructed from methods such as ELECTRE (Elimination 738 

and choice translating reality) and PROMETHEE (Preference ranking organization 739 

method for enrichment evaluation); these two terms represent method families suited to 740 

 
Equation 1 
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various types of issue (sorting for Electre-Tri, choice for ELECTRE I and PROMETHEE 741 

I, ranking for ELECTRE III and PROMETHEE II, …), the general principles of which are 742 

in brief: 743 

 ELECTRE (Roy, 1968) provides a ranking or preference relationships between 744 

solutions, without calculating a cardinal score, based on concordance & 745 

discordance indices, and threshold values (Wang et al., 2009). The relationships 746 

between solutions are obtained based on pair comparison under each of the 747 

decision-maker’s objectives. 748 

 PROMETHEE (Brans and Vincke, 1985) is based on quantified comparison of 749 

solutions, i.e. the relationship between solutions under a given indicator will be 750 

described by a preference function evaluating the intensity of this preference. 751 

This information is used to calculate the “incoming” and “outgoing” flows of a 752 

solution, i.e. the quantitative measurement of confidence and regret, respectively, 753 

relating to a solution (Wang et al., 2009). 754 

For selection or ranking issues, methods such as PROMETHEE are deemed easier to 755 

use than methods such as ELECTRE (Velasquez and Hester, 2013), and were indeed 756 

designed as an improvement on the latter (Brans and Vincke, 1985). 757 

 758 

5.3. Normalization 759 

A question rarely addressed, concerning the application (or possible development) of 760 

selection methods, is that of normalization. Most of these methods require normalization 761 

of the indicators to enable their comparison on a common scale; if normalization is not 762 

applied by a desirability function, simple mathematical operators are applied, such as 763 

division by an optimum or a reference value. Yet the works of Pavličić (2001) indicate 764 

that the selection results may depend on the mathematical operation applied, and that 765 

use of vector type normalization (Equation 2 – xij is the value of the jth indicator for 766 

solution i, and ij is the corresponding normalized indicator) should be reconsidered. So it 767 

seems that the normalization operator must be wisely chosen for the applying the 768 

selection methods. 769 

 770 
 771 

5.4. Difficulty of choosing a selection method 772 

In view of these technical considerations and noting the diversity of approaches, the 773 

question of choosing a selection method is potentially complex. Indeed, the diversity of 774 

solution selection methods, and more generally MADMs, is accentuated by possible 775 

combinations between methods. For example in Abakarov et al. (2013), the AHP method 776 

and tabular method are combined, and in Massebeuf et al. (1999), the Pareto front is 777 

filtered by a partial aggregation method, constructed with the elements of two well-778 

known methods. While none of the methods appears to be the best, their respective 779 

advantages and shortcomings may make them incompatible with certain applications 780 

 
Equation 2 
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(Velasquez and Hester, 2013). Thus partial aggregation methods may be incompatible 781 

with a decision-maker pressed for time, and so must be replaced by a full aggregation 782 

method requiring little interaction with the decision-maker. As with weighting methods 783 

(section 4), the choice will also be partly subjective, since it depends on the affinity with 784 

one method or another. Moreover, they can lead to different results, as observed by 785 

Wang and Rangaiah (2017): they compared 10 selection methods, obtained different 786 

results for the same problem, and discussed the relevance of these methods for dealing 787 

with an optimization problem. Considering a number of criteria (amount of user inputs, 788 

simplicity, and applicability), they even recommend 3 methods: TOPSIS, GRA (Gray 789 

relational Analysis) and SAW (Simple Additive Weighting). 790 

6. Multi-objective optimization algorithms 791 

An optimization algorithm refers to a more or less automated process, employed to seek 792 

combinations of design variables leading to the best solutions, according to the MADM 793 

used. Since the size of the space of the possible solutions varies exponentially with the 794 

number of design variables and the number of values that these variables may adopt, an 795 

“optimization engine” (as per Marler and Arora (2004)) is necessary to efficiently identify 796 

the best solutions (in a given context). There are many possible optimization strategies, 797 

and in the present work they have been grouped into five categories: 798 

 Exhaustive search; 799 

 Graphic optimization; 800 

 Deterministic indirect search and direct search methods; 801 

 Methods using stochastic metaheuristics; 802 

 Interactive methods. 803 

Exhaustive search and graphic optimization are considered as approaches without 804 

optimization engine, while the other three categories are considered as approaches 805 

using optimization engines. Thus, the reviewed articles are given in Tables 5 and 6, 806 

which correspond to the two groups respectively. 807 

 808 

It should be noted that in the literature, a considerable number of authors do not 809 

explicitly give the algorithm employed for optimization purposes, if at all. Thus it appears 810 

that the question of the optimization algorithm is often neglected, due to a probable lack 811 

of knowledge and command of the subject (highly mathematical approach). his leads to 812 

papers which are not reproducible by other researchers. One easy solution consists in 813 

using software equipped with dedicated optimization functions. 814 
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Table 5: Optimization approaches and methods without optimization engines 815 

Optimization 
approaches 

Optimization 
methods 

References [Product & process type] 

Exhaustive 
search 

- 

Lespinard et al. (2015) [Pumpkin pasteurization]; Nishitani 
and Kunugita (1979) [Milk evaporation]; Sidaway and Kok 
(1982) [Food continuous sterilization]; Taheri-Garavand et 
al. (2018) [Banana convective drying] 

Graphic 
Overlaid contour 
plots 

Alam et al. (2010) [Indian gooseberry osmotic 
dehydration]; Annor et al. (2010) [Tempeh preparation]; 
Arballo et al. (2012) [Pumpkin, kiwi, pear osmotic 
dehydration]; Collignan and Raoult-Wack (1994) [Fish 
dewatering and salting]; Ozdemir et al. (2008) [Pepper 
osmotic dehydration]; Singh et al. (2010) [Carrot osmotic 
dehydration] 
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Table 6: Optimization approaches and methods with optimization engines 816 

 817 
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6.1. Exhaustive search and graphic methods 818 

It is possible to do without optimization engines, generally when the problem is simple, 819 

i.e. when it comprises a small number of design variables and objective functions, and 820 

when the calculation time of a solution is sufficiently short. In this case, all possible 821 

solutions are generated, and an MADM can be applied to rank them and/or select the 822 

best. In Lespinard et al. (2015), the total desirability is calculated over the entire 823 

feasibility domain based on polynomial regression models. In Nishitani and Kunugita 824 

(1979), the number of possible solutions is limited to 6 in the first optimization study (6 825 

possible flow patterns), and in the second optimization study, the 6 solutions are 826 

recalculated for various temperature levels of the incoming product. Finally, in Sidaway 827 

and Kok (1982), the indicators are evaluated for all temperature and holding time 828 

combinations which comply with a given sterility constraint. 829 

 830 

Under RSM, it is also possible to do without an optimization engine, using graphic 831 

optimization methods, such as overlaid contour plots, as mentioned above (section 5). 832 

So this method has both a filtering role according to the preferences, and search role in 833 

the solutions feasibility space. Indeed, overlaying certain surface response contours of 834 

various indicators makes it possible to reduce the search space without calculations, 835 

and thereby provide a smaller set of acceptable solutions. Use of this method has been 836 

found in six studies (Alam et al., 2010; Annor et al., 2010; Arballo et al., 2012; Collignan 837 

and Raoult-Wack, 1994; Ozdemir et al., 2008; Singh et al., 2010) as an optimization 838 

engine, and although its usefulness is recognized, it does have a number of 839 

shortcomings, mentioned in section 5. 840 

6.2. Optimization engines 841 

Conversely, when there are a high number of possible solutions and indicators, it 842 

becomes necessary to employ an optimization procedure enabling automated searches 843 

for the best solutions. The search methods may be divided into two categories: 844 

deterministic methods and stochastic methods. 845 

 846 

Deterministic optimization methods guarantee that a solution representing an optimum 847 

will be obtained (Miri et al., 2008). However, depending on the method employed, the 848 

optimum found may only be local, i.e. the adopted solution is Pareto efficient in only a 849 

portion of the search space, but may be dominated by other solutions situated in other 850 

portions of the search space. There are two types of deterministic method, namely 851 

indirect search methods and direct search methods (Romdhana et al., 2016). Indirect, or 852 

gradient-based, search methods require derivable objective functions, which is seldom 853 

the case, since many variables are discrete and/or discontinuous (Pailhès et al., 2011). 854 

So gradient-based methods are applicable only to certain types of problem. Thus the 855 

algorithms implementing these methods converge toward an optimum, which achieves 856 

rapid convergence in the case of a single extremum. However, most multi-criteria 857 

problems involving several extrema (“multi-extremal” or “multimodal” problems), 858 

gradient-based methods are unable to converge unfailingly toward an overall optimum 859 

(Banga et al., 2003). When these methods are used to generate a Pareto front, they are 860 

coupled with aggregation functions. Thus, Goñi and Salvadori (2012), Kawajiri and 861 
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Biegler (2006), Nishitani and Kunugita (1983) and Olmos et al. (2002) use the є-862 

constraint method, the formulation of which is to optimize one indicator at a time, 863 

considering the other indicators as constraints limited by a given value є (Seng and 864 

Rangaiah, 2008). So the gradient-based method makes it possible to solve every single-865 

objective problem, which entails solving several optimization problems, and requires the 866 

values є to be defined, which may prove difficult without a priori knowledge of the 867 

possible optimal value of the indicators. Furthermore, varying only one design variable in 868 

the search space (with the others fixed) does not necessarily make it possible to 869 

converge toward an optimum due to failure to factor in interactions between variables 870 

(Myers et al., 2016). Another example is use of the weighted sum with variable weights 871 

to generate the Pareto front by Hadiyanto et al. (2009). In order to identify overall optima 872 

and not only local ones, some deterministic methods have been developed. These 873 

methods, known as direct search methods, evaluate the objective functions without 874 

calculating their derivative. For example, the Hooke-Jeeves method used by De Jong 875 

(1996) and Gergely et al. (2003), consists in evaluating the objective function around a 876 

start point, and shifting the search zone in the direction that improves the objective 877 

function until a stop criterion is obtained (Benasla et al., 2008). Certain authors 878 

(Azarpazhooh and Ramaswamy, 2012; Corzo and Gomez, 2004; Eren and Kaymak-879 

Ertekin, 2007; Kahyaoglu, 2008; Noshad et al., 2012; Vieira et al., 2012; Yadav et al., 880 

2012) have used a direct search method implemented in the Design-expert software, 881 

dedicated to RSM (Myers et al., 2016). Direct search methods have the major 882 

shortcoming of converging less and less quickly as the size of the problem to solve 883 

increases (number of design variables and of objective functions) (Banga et al., 2003). 884 

In addition, just like indirect search methods, they require an objective function in 885 

algebraic form. 886 

 887 

Due to the fact that deterministic optimization methods are not always suitable, methods 888 

based on random draws and iterative procedures have been developed. These 889 

methods, known as stochastic methods, or using stochastic metaheuristics, are 890 

generally inspired by natural phenomena or everyday life, and have been developed in 891 

order to solve problems for which conventional deterministic methods proved ineffective 892 

(Collette and Siarry, 2013). They make it possible to couple the optimization algorithm to 893 

the problem without having to formulate it in an algebraic form, by directly optimizing 894 

based on indicator values returned by the process model. In addition, stochastic 895 

methods are able to converge more quickly than deterministic methods in the case of 896 

complex problems, but with no guarantee of obtaining an overall optimum (Banga et al., 897 

2003). Recently, a literature review of the application of metaheuristics in food 898 

engineering (in the broad sense, including formulation of foods and production of 899 

pharmaceutical products) was conducted by Wari and Zhu (2016); it emerged that 900 

stochastic methods, despite their complexity, are seeing increasing use with the 901 

development of computer calculation capacities. The three major common points of 902 

stochastic methods are: i) seeking an overall optimum for the entire feasibility domain of 903 

the design solutions; ii) the stochastic (random) nature of the calculation of new 904 

solutions in each iteration; iii) they authorize downgrading of the indicators to explore the 905 

search space more widely. In the literature, the genetic algorithms are by far the most 906 

popular, with no fewer than 12 studies (Table 5). Genetic algorithms imitate the process 907 

of genetic evolution: an initial “population” of solutions undergoes “genetic modifications” 908 
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by crossover, mutation, and selection of elements of its DNA (its “genes” correspond to 909 

the values adopted by the indicators) according to the performances of each initial 910 

individual (i.e. solution) to form new individuals, i.e. potentially better-performing 911 

solutions for the multi-objective problem (Hugget et al., 1999; Wari and Zhu, 2016). 912 

Several optimization methods employ genetic algorithms, such as MOGA (Multiple 913 

Objective Genetic Algorithms) or NSGA (Non-dominated Sorting Genetic Algorithms), 914 

the differences between which reside in the Pareto efficiency calculation for the 915 

individuals. It is possible to couple together stochastic methods, as in Romdhana et al. 916 

(2016), where a genetic algorithm was coupled to a particle swarm algorithm. Wari and 917 

Zhu (2016) provided some guidelines on selecting a metaheuristic tailored to the design 918 

problem encountered. 919 

 920 

6.3. Interactive methods 921 

Interactive methods, presented in section 4, are not optimization engines in themselves, 922 

but rather “interaction principles” (Collette and Siarry, 2013). They may require use of an 923 

optimization engine to generate a small number of solutions to present to the decision-924 

maker in each iteration. In the NIMBUS method for example, used in Hakanen et al. 925 

(2007), several single-objective sub-problems are defined according to the decision-926 

maker’s preferences, and a gradient-based method is used to optimize each of the sub-927 

problems. It should be noted that there are a host of heuristics, including the one known 928 

as “simplex”, which do not require an optimization engine to progress in the interactive 929 

search process. 930 

7. Toward holistic design approaches 931 

Hitherto, optimization frameworks have been constructed primarily either with a view to 932 

generating the Pareto front, or by partially employing MADMs. Various functions coupled 933 

to optimization algorithms have been used to generate a Pareto front, leaving 934 

expression of decision-maker preferences outside of the field of study. Use of partial 935 

aggregation methods and interactive methods, which provide a framework for 936 

preference integration, has been encountered once for each of these types of method 937 

(Massebeuf et al. (1999) and Hakanen et al. (2007) respectively). Highly diverse solution 938 

selection methods have been employed, such as weighted sum, which is among the 939 

best known, or weighted geometric mean recommended by Derringer (1994). 940 

Conversely, certain aspects of MOO are often neglected; for example, use of methods 941 

able to help the decision-maker weigh the objectives remains restricted. 942 

 943 

Yet the diversity of decision-making aid methods makes it possible to construct holistic 944 

design frameworks, i.e. frameworks which handle all aspects of MOO in a structured 945 

way. The constituent elements of the MOO associated with decision-making aid and 946 

optimization (preference integration methods, selection methods and optimization 947 

methods) may be defined under various approaches, the overview of which given in this 948 

work is far from exhaustive. Thus there are holistic approaches for handling a multi-949 

objective problem, such as OIA design methodology (Gero and Kannengiesser, 2007). 950 
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This approach, used in Sebastian et al. (2010) and Raffray et al. (2015), combines 951 

process modelling to link design variables and indicators (Observation), integrating 952 

preferences on the indicators using desirability functions (Interpretation), and 953 

constructing an objective function with an aggregation function (Aggregation). A 954 

stochastic optimization algorithm may then be integrated into the design framework to 955 

obtain the best solutions. This is a general methodology, which must be tailored to the 956 

specific context of the study, i.e. the type of problem and field of application (Miettinen, 957 

1998). 958 

 959 

Once the study requirements have been identified, the methods to be employed need to 960 

be considered. This is a complex subject, into which the advantages and shortcomings 961 

of each method have to be factored, as well as the cognitive aspect of the decision-962 

making process; thus, it is important to reduce the “cognitive load” on the decision-963 

maker to facilitate the decision-making process (Hakanen et al., 2007). An initial avenue 964 

of consideration resides in the moment, in the design process, when the preferences of 965 

the decision-maker and/or expert are articulated. Thus optimization methods are often 966 

classified according to whether the preferences are articulated a priori, interactively (or 967 

progressively), or a posteriori (Collette and Siarry, 2013; Marler and Arora, 2004; 968 

Miettinen, 1998), or even in a fourth category with no preferences articulated (“no-969 

preference”) (Andersson, 2000; Erdoğdu, 2008; Miettinen and Hakanen, 2009). Thus, if 970 

the preferences are formulated a priori, use of desirability functions, a weighting method 971 

and an aggregation function will make it possible to construct an objective function 972 

which will be incorporated into an optimization algorithm in order to generate the best 973 

solution. In the case of a posteriori formulation, obtaining a Pareto front is relevant, but it 974 

is easier for the decision-maker to select the best solution from a small set. Marler and 975 

Arora (2004) also postulated that it is important to define, prior to choosing a method, 976 

the type of preferences provided, as well as the quantity of information. Collette and 977 

Siarry (2013) provided clues to helping choose multi-objective optimization methods, 978 

based in particular on analysing the complexity of the problem and analysing the 979 

objective functions. Miettinen (1998) proposed an organization chart for the choice of 980 

multi-objective optimization methods, but it proved relatively complex to use. If no 981 

method is entirely suitable, various methods may be combined to combine the 982 

advantages and compensate for the shortcomings. Examples of these hybrid solving 983 

approaches can be found in Abakarov et al. (2013), which combined two solution 984 

selection methods, and in Romdhana et al. (2016), which combined two stochastic 985 

optimization methods. 986 

 987 

The authors would like to emphasize that holistic approaches do not provide a 988 

guarantee of obtaining the best solution in terms of the decision-maker. Like any design 989 

approach, MOO approaches are part of an iterative decision-making process, which is 990 

only facilitated by using decision-making aid methods. Thus it is unlikely that a 991 

satisfactory solution will be found in the first iteration; that is why it is important to 992 

develop high-performance decision-making tools, which facilitate the optimization 993 

procedure. 994 

 995 

In this regard, some research questions have been identified: 996 

 Evaluation of the relevance of the indicators has been identified as a difficult 997 
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search question. Thus the definition of the indicators can have a crucial impact on 998 

the optimization results, and few authors have looked into this subject. The 999 

question of relevance of the sustainability indicators is particularly topical, 1000 

especially with regard to the social dimension, which remains hard to integrate 1001 

into the process. The challenge is the integration of all the sustainability 1002 

dimensions using appropriate indicators. 1003 

 The development of food engineering process simulators suitable for design 1004 

purposes. To develop these simulators, it should be defined what is expected of a 1005 

model tailored to optimization, especially in terms of compromise between 1006 

calculation speed and accuracy of results. The development of evaluation 1007 

frameworks based for example on the PEPS framework (Vernat et al., 2010) 1008 

would make it possible to select the models best suited to a given context. 1009 

 Although there are some weight definition aid tools (AHP, SMARTER, Simos, 1010 

SWING…), decision-maker weighting of the objectives remains a difficult task, for 1011 

example if it involves weighting economic objectives against environmental 1012 

objectives. Knowledge derived from psychology and social sciences could 1013 

develop weighting methods best meeting the decision-maker’s preferences, while 1014 

avoiding as far as possible cognitive biases, and integrating data such as opinion 1015 

surveys. 1016 

 A huge amount of reasearch has been carried out in stochastic metaheuristics 1017 

since the 90’s. However, they find limited applications, in particular in food 1018 

process engineering, which brings many opportunities to researchers in 1019 

metaheuristics. We identified two search fronts in particular:  simplifying the 1020 

search space to limit the number of calculations, and integrating robustness 1021 

criteria in the selection of the best solutions, in order to directly eliminate the 1022 

solutions most sensitive to small variations in the design variables. Thus, 1023 

collaborations between researchers in metaheuristics and researchers in food 1024 

process design could produce better-suited algorithms for food process design. 1025 

 Finally, in the more general framework of food systems sustainability, how can 1026 

processing design be integrated into a more global system? In fact, design of 1027 

sustainable industries actually entails factoring in food production as well as 1028 

processing. Consequently, the performances of processing must be evaluable on 1029 

a larger scale, and models must be tailored to optimization of the industry as a 1030 

whole. 1031 

8. Conclusion 1032 

This review has identified various MOO methods employed in the design of food 1033 

engineering processes, which are mostly fragmentary. Indeed, the possibilities offered 1034 

by design engineering and decision-making aid are still under-exploited in the food 1035 

engineering field. The associated methods facilitate the design process, by clearly 1036 

defining the preferences of the experts and/or decision-maker, and by optimizing the 1037 

process depending on the type of problem encountered. 1038 

 1039 

The lack of development of holistic methods can be explained by several factors. First, 1040 

the difficulty in selecting suitable indicators, which can give meaning to the decision-1041 
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making variables, in particular for certain sustainability dimensions. Then, while it is 1042 

sometimes possible to find the desired balance between calculation time and accuracy 1043 

of the results, on the other hand gaps in the modelling of food engineering processes 1044 

have been observed, as well as a need for simulators tailored to optimization. Also, 1045 

weighting of the objectives is difficult, and the optimization algorithms require further 1046 

improvements to be able to rapidly converge toward high-performance solutions. 1047 

 1048 

Hence it would seem pertinent to develop an overall methodological framework which 1049 

could guide the designer step-by-step in handling a design problem. This framework 1050 

would greatly facilitate integration of the various decision-making aid and optimization 1051 

tools. In this way it could rationalize the methodological choices and simplifications 1052 

necessary for optimization. 1053 
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