
HAL Id: hal-02348201
https://hal.science/hal-02348201

Submitted on 5 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Y MDE Approach for Enactable Software Process
Models Generation

Samba Diaw, Mamadou Lakhassane Cisse, Alassane Bah

To cite this version:
Samba Diaw, Mamadou Lakhassane Cisse, Alassane Bah. An Y MDE Approach for Enactable Soft-
ware Process Models Generation. 6th International Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2018), Jan 2018, Madeira, Portugal. pp.511-518. �hal-
02348201�

https://hal.science/hal-02348201
https://hal.archives-ouvertes.fr

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in:
http://oatao.univ-toulouse.fr/22349

Official URL

DOI : https://doi.org/10.5220/0006649505110518

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

To cite this version: Diaw, Samba and Cisse, Mamadou
Lakhassane and Bah, Alassane An Y MDE Approach for Enactable
Software Process Models Generation. (2018) In: 6th International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD 2018), 22 January 2018 - 24 January 2018
(Madeira, Portugal).

An Y MDE Approach for Enactable Software Process Models

Generation

Samba Diaw, Mamadou Lakhassane Cisse and Alassane Bah
Polytechnic Institute (ESP) @ Cheikh Anta Diop University (UCAD), UMMISCO Laboratory, Dakar, Senegal

Keywords: Model-driven Engineering (MDE), Model Transformations, MDE Software Process, Tailoring,

Instantiation.

Abstract: The advent of MDE enabled to automate software development while reducing its production time. While

software companies need continually to improve and customize their software processes, an automated

approach to do so is still lacking. Most of those companies have an organizational process that is used

whenever they have an upcoming development project. Reusing the same process for any development

project is somehow inadequate. So, tailoring of such a process is necessary to fit organisational and

operational companies’ needs. However, even if that tailored process can be used for a specific project, it

still lacks resources needed for execution. In this short paper, we propose a Y model-based approach that

allows tailoring software processes and generating enactable software process models by using models

transformations. We defined metamodels to express models involved in those transformations. We illustrate

our approach with an extract of the UWE Process which we adapt and instantiate for a development project

with .Net.

1 INTRODUCTION

Nowadays, software applications become more and

more important in our daily life. However, their

implementation becomes more and more complex

depending on their nature. To develop software with

a high quality we should have a good process.

Therefore, it is important for companies to have their

own generic process that can be adapted (i.e. tailor)

to any project/organization context. For a better

management of a software development project, it is

important to capture all changes that happen during

the elaboration of the software meaning the

description of the actual (i.e. real) process.

According to Curtis and al., a software process

model (process model, for short), is defined as “an

abstract description of an actual or proposed

software process which represents selected process

elements that are considered important to the

purpose of the model and can be enacted by a human

or machine” (Curtis and al., 1992). A process model

is an abstract representation and does not capture

concrete information on how the model-products are

really managed during process execution. While

software companies need continually to improve and

customize their software processes, an automated

approach to do so is still lacking. Most of those

companies have an organizational process that is

used whenever they have an upcoming development

project. So, tailoring of process models to exactly fit

organisational and operational companies’ needs

constitute a crucial task for the success of software

development project. Tailoring could be a very

difficult task, which typically has to take into

consideration several human and organisational

issues. In this respect, managing such a complexity

with model-transformations is a challenging and

ambitious issue.

To address this issue, we propose in this article, a

Y model-based approach to tailor MDE processes

and then generate enactable software process

models. To validate our approach, we use an extract

of the UWE process and apply it to a development

project in .Net.

The remainder of the article is structured as

follows: the section 2 presents the Y model-based

approach while the section 3 presents the prototype.

Section 4 deals with the validation of our Y

approach with an illustrated example. The section 5

deals with related works. In the last section, we

conclude this article and introduce some

perspectives.

DOI: 10.5220/0006649505110518

2 THE Y MODEL-BASED

APPROACH

Our contribution will consist in designing and

implementing a Y model-based approach (Figure 1)

to produce an enactable software process model

from a generic process model.

The first step (tailoring) of this approach is to

produce a tailored process model from a generic

process model so-called PIPM (Project Independent

Process Model). For the first step, the main idea is to

consider tailoring as models’ transformation that

takes two input models:

• a generic software process model independent

from any project (PIPM) conforms to

SPEM4MDE,

• a model representing the context of a

project/organization conforms to SPCM

(Software Process Context Metamodel).

The second step is the instantiation of the

tailored process model according to a

project/organization context. As a result, an

enactable process model so-called PSPM (Project

Specific Process Model) will be produced and will

include the actors/tools and tasks to be executed.

The Y model-based approach involves four

metamodels:

• SPEM4MDE (Diaw and al., 2011): a

metamodel taking into account the concepts of

software development process definition,

• SPCM (Hurtado and al., 2011): a metamodel

that defines the context model of a

project/organization),

• PRM (Project Resources Metamodel) (Figure

2): a new metamodel that represents the

resources of a given project

• EPM (Enactable Process Metamodel) (Figure

3): a new metamodel that defines managed

elements at enactment time

Figure 1: The Y model-based approach.

The major concepts of PRM are

ResourceElement and ResourceType. A resource

element defines every resource used within a

software development project (actors, tools, etc.). It

has a name, a description and a kind (primary or

secondary). The resource type defines the type of

resource, which can be human, software, hardware

or any kind of resource type defined by the project

manager. Resource types might not have the same

properties. For solving that issue, we defined the

ResourceProperty concept in order to define new

properties for a resource type. Resource elements

can be organized in groups. Only human resource

elements are linked with their role. Examples of

resource elements can be Bob (name), which is a

human resource type. For the human resource type,

we can also define different others properties such as

address, phone number, family name. Note that the

list is not exhaustive and give the responsibility to

the project manager to define new suitable

properties.

Figure 3 presents the Enactable Process

Metamodel (EPM). The instantiation process will

produce a model ready to be enacted. The

importance of this model is to give to the project

manager all information about tasks and their

performers. The model contains the different

resources chosen by the project team for taking part

in the execution. The resources are not only human-

like but any kind of resource that will participate in

Figure 2 describes the Project Resources

metamodel. The resources used in a software

development project are dependent to the project

variabilities. The formalization of those elements

enables the automatic instantiation of the tailored

process. We have defined a new metamodel called

PRM (Project Resources Metamodel) to define used

resources in the execution of a development project.

This metamodel describes every resource element

within a software development project.

the production of the real artifacts. Having a

metamodel representing these concepts is a major

key of our approach and enables us to capture the

real process (i.e. process in life). For that purpose,

we have defined the EPM metamodel. The main

concepts of EPM are “TaskInstance”,

“MDEActivityInstance” and

“TransformationInstance”. They help defining the

activities and tasks that are to be executed.

Transformation instance is also a task instance. The

task instance takes as parameters one or more model

instances (i.e. concrete model-products). Every

activity or task is considered as an enactment

element meaning that they are the elements that are

going to be executed. We also reused the

ResourceElement concept from the Project

Resources Metamodel to represent the specific

resources (human, hardware, software) for executing

a task or transformation.

Figure 2: Project Resources Metamodel – PRM.

Figure 3: Enactable Process Metamodel.

3 THE PROTOTYPE

To validate our approach, we have developed a

prototype. As shown by figure 4, the prototype is

divided into two components: SPEM4MDE Process

Editor, and SPEM4MDE Process Enactment Engine.

4 VALIDATION

To illustrate our Y model-based approach, we have

chosen as an example the UWE (UML-based Web

Engineering) process (Koch and al., 2006) (Kroiß
and al., 2008). UWE is a process that covers web

systems development cycle from requirements to

code generation. Figure 5 represents an extract of the

UWE process described with SPEM4MDE.

4.1 Project Independent Process Model
(UWE Process)

After the description of the requirements model a

first transformation (Req. 2 content) produces the

content model. The UML standard may be used to

describe the content model. The content model is

used for the following activity (Content 2

Navigation) to produce the navigation model. From

one content model, different navigation views can be

obtained, e.g. for different stakeholders of the web

system like anonymous user, registered user and

administrator.

The requirements model contains information

that is useful for the enrichment of the navigation

model. For this purpose, the transformation (Req. 2

Navigation) is used.

The navigation model generated on the content

model contains itself valuable information that

allows for reasoning and improving the navigation

model. For the transformation (Navigation

Refinement) the following constrains are defined:

1. An index is added for all associations of the

navigation model that have multiplicity

greater than one at the directed association

end.

2. All navigation classes that have at least one

outgoing association require a menu class

with menu items defined on basis of the

association ends of the associations.

Presentation elements are generated based on

navigation elements of the navigation model and

merged then with style guide information.

For example, for each link in the navigation

model an adequate anchor is required in the

presentation model.

Functional models (content, navigation and

presentation) are afterwards integrated mainly for

the purpose of verification into a big picture model.

Finally, the platform-specific code (Java, .Net) is

generated from big picture model.

Figure 4: Architecture of SPEM4MDE-PSEE.

SPEM4MDE Process Editor allows process

designers to describe, modify and tailor process

models. Once the process model is described, the

process designer may check it with respect to the

constraints defined in the SPEM4MDE metamodel,

or regarding to additional constraints. There are two

ways for checking MDE process models: checking

on demand (i.e. when the user triggers himself the

checking process) or checking during edition (i.e.

checking is done automatically by the tool).

Outcomes of process editing are stored in a

repository called MDE Process Repository. For

instantiating a MDE process model in a given

project, a project manager may also use this editing

component.

SPEM4MDE Process Enactment Engine allows

the project manager to instantiate a tailored process

model and the developers to enact a project-specific

process model by giving them their tasks and the

current state of any process element. It is integrated

with other eclipse-based tools (ATL, Smart QVT,

Code Management Tool, etc.) in order to execute the

activities of the instantiated process model.

Developers can then keep track of what is the

current state of each element of the MDE project,

what has been done before and what is left.

Outcomes (models, code, documentation, etc.) are

stored in a MDE Project Repository

Figure 5: Generic UWE Process model.

4.2 Context Model

To tailor the UWE process, we must have a context

model representing process variations. This context

model will define the specific characteristics we

have chosen to deal with the process. In this way, we

can configure new process models through model

transformations. The characteristics of the specific

project are provided by the project manager. This

will result in the generation of a new adapted

process model.

The context variables considered in this tailoring

process are the project type and the development

platform. SPCM allows us to create more variables

but we rather stick to these two variables since they

describe enough our context model.

Table 1: Context elements and values.

Context Attribute Value

Project type Development Project

Development Platform . NET

Table I gives the values for our two context

attributes. The tailoring process that is done based

on them will give a new process adapted to the

context of the project. We are going to use ATL

(Jouault and al., 2006) to define the tailoring

transformation rules.

4.3 Tailored Uwe Process Model

The execution of the tailoring transformation (T1)

allows us to configure a new process. That process

will be adapted to the project context and is obtained

through automatic generation.

Figure 6 represents the resulting process after the

tailoring activity. Only the required activities roles

and artifacts are present. The resulting process does

not include any additional activity. The “Req. 2

navigation” transformation is removed, as it is not

mandatory when the navigation model produced by

the “Content 2 Navigation” presentation is well

defined. The “Java Code Generation” activity is also

removed, as it is not mandatory for a .Net

development project.

4.4 Project Resources Model

In our project resources model, we will give the

effective resources in charge of tasks execution. In

the UWE process, human actors do some activities

whereas transformations are executed by MDE tools.

The involved roles in the UWE process are:

• Web Developer

• Java Developer

• .Net Developer

To instantiate our tailored process model, we are

going to choose real actors for those roles. For the

role web developer, we can have a human resource

with first name, last name, and address properties.

Bob and Alice will then play the web developer role

while Trevor will play the .Net developer.

4.5 The Resulting Enactable Process
Model (Enactable UWE Process)

Once we have the tailored process, we can go

through an instantiation activity with the real actors.

The instantiation strategy enables us to have a final

process model so-called enactable process model.

This process model contains tasks to be executed

and also the real actors to execute them (Bob, Alice,

Trevor). It still conforms to the EPM metamodel.

Figure 7 shows the last step of our approach that

produces the enactable process model.

Figure 6: Tailored UWE process model.

Figure 7: Enactable UWE Process Model.

(Cao and al., 2004), a set of agile practices tailored

for large-scale complex projects has been proposed.

In (González and al., 2014), an example of a

template-based tailoring is presented. For each

possible project situation, a well-defined process is

established answering a scenario. For every scenario

that might occur, one of the defined processes is

chosen and executed for software development. This

method is also used in (Cockburn and al., 2004) by

taking into account project criticity and team size to

choose the right process. This type of approach is

highly depending on a complete knowledge of

projects type and size that the company will have to

deal with.

Using criteria to be applied in the tailoring

process is an important task. However, those criteria

must be carefully chosen to see which ones

influence more the tailoring process (Kalus and al.,

2013) and even the links between those criteria.

Furthermore, each criterion has its impact on a

specific kind of project and none on another one. In

(Xu and al., 2008), a set of measures is provided to

take into account different project situations. For

5 RELATED WORKS

Process tailoring is the mechanism of adapting a

software process to project needs (Silvestre and al.,

2014).

In (Pedreira and al., 2017) different tailoring

methods have been showed. In some cases, it is done

on the organizational level and in others on the

project level. Tailoring on the organizational level

allows adapting a standard process to the needs of a

specific organization. The resulting process is

adapted to the needs of each individual company.

Considering that projects in a single company

can also differ, we need to tailor process at the

project level, which means that the resulted process

of the organizational level is adapted to the needs of

a specific project.

Some work done around tailoring is (Hanssen

and al., 2005), which presented a simple pragmatic

method for adapting RUP to a specific project

type in a company. They report that in their

experience, process tailoring in small companies is

best done as a simple and pragmatic process, and not

as one, which is over-extravagant and strict. In

each criterion, they ask two questions: What does it

means (rationale) ? and what might happen when not

considering this particular criterion (implication)?

Another attempt in (Martínez-Ruiz and al., 2012)

focuses on the requirements for tailoring software

processes. Unlike the former paper, they did not

show up concrete criteria but focus more on the

elements being used for tailoring and the causes of

variations during process tailoring.

One of the common criteria find in the literatures

is the team or company size. The project type also is

one the most shared criterion for process tailoring.

Among the factors that influence the software

process we have the project, the organization, the

product and the stakeholders of the project

(Martínez-Ruiz and al., 2012). Figure 8 shows four

major steps in software process tailoring.

Figure 8: Software process tailoring steps(Martínez-Ruiz

and al., 2012).

The criteria can also be split in four groups

(Preez and al., 2009):

• the ones with regard to the organization,

• the ones with regard to the project,

• factors related to the product,

• factors related to human agents.

In (Hurtado and al., 2014), a model-based

approach to software process tailoring has been

proposed (figure 9). Even if the proposal approach

has been applied for a medium-size Chilean

company, the concepts employed will not entirely

change when applied to a larger company. This

approach is made possible using organizational

process model conforms to SPEM and a project

context model. The transformation rules written in

ATL will accordingly to the metamodels, produce an

adapted process model still conforms to SPEM.

Figure 9: An MDE approach to tailoring (Hurtado and al.,

20014).

5 CONCLUSION

In the literature, few approaches are natively

supporting automatic process tailoring. Using MDE

principles to tailor process model in a context of an

organization or project and then generating an

enactable process model is an ambitious issue.

To address this issue, we have presented a Y

model-based approach that allows tailoring software

processes and generating enactable software process

models. Our approach involves two main activities

tailoring and instantiation. The prototype we deve-

loped allows using an automated support to assist

process designer in those two complex activities.

We validate our approach with an extract of the

UWE process, which we adapt within a context of a

.Net development project.

The tailored process is instantiated with project

resources in order to produce an enactable process

model.

Two important perspectives of this work are

under consideration. Firstly, we plan to develop a

process engine to assist stakeholders in the execution

of their tasks. Secondly, we envisage defining a full

collaborative process execution metamodel for the

enactment purpose.

REFERENCES

Cao L., Mohan K., Xu P., and Ramesh B., 2004. “How

extreme does extreme programming have to be?

Adapting XP practices to large-scale projects,” in

System Sciences, 2004. Proceedings of the 37th

Annual Hawaii International Conference on. IEEE,

pp. 10–pp.

Cockburn A., 2004. Crystal clear: a human-powered

methodology for small teams. Pearson Education.

Curtis B., Marc Kellner I, and, Over J., 1992. Process

modeling D. L. Levin & F. C. Morriss, eds.

Communications of the ACM, 35(9), pp.75-90.

Diaw S., Lbath R., and Coulette B., 2011. “Specification

and Implementation of SPEM4mde, a metamodel for

MDE software processes.” in SEKE, Miami - USA, pp.

646–653.

Du Preez N., Lutters D., and Nieberding H., 2009.

“Tailoring the development process according to the

context of the project,” CIRP Journal of

Manufacturing Science and Technology, vol. 1, no. 3,

pp. 191–198.

Fall I., Diaw S?, 2016. A Metamodel for MDE Process

Model-Products Relationships. IEEE 25th

International Conference on Enabling Technologies:

Infrastructure for Collaborative Enterprises

(WETICE) Pages: 166 – 171.

González Pérez C and Henderson-Sellers B., 2008.

Metamodeling for software engineering. Chichester:

Wiley.

González F., Silvestre L., Solari M., and Bastarrica M. C.,

2014. “Template Based vs. Automatic Process

Tailoring,” in XXXIII International Conference of the

Chilean Society of Computer Science (SCCC 2014).

Hanssen G. K., Westerheim H., and Bjørnson F. O., 2005.

“Tailoring RUP to a defined project type: A case

study,” in International Conference on Product

Focused Software Process Improvement. Springer,

pp. 314–327.

Hurtado Alegra J. A., Bastarrica M. C., Quispe A., and

Ochoa S. F., 2014. “MDE-based process tailoring

strategy,” Journal of Software: Evolution and Process,

vol. 26, no. 4, pp. 386–403, Apr.

Hurtado Alegra J. A., Bastarrica M. C., Quispe A., and

Ochoa S. F., 2011. “An MDE approach to software

process tailoring,” in Proceedings of the 2011

International Conference on Software and Systems

Process. ACM, pp.43-pp52.(Online).Available:http://

dl.acm.org/citation.cfm?id=1987885

Jouault F., Allilaire F., Bézivin J., Kurtev I., and Valduriez

P., 2006. “ATL: a QVT-like transformation language,”

in Companion to the 21st ACM SIGPLAN symposium

on Object-oriented programming systems, languages,

and applications, pp. 719–720.

Kalus G. and Kuhrmann M., 2013. “Criteria for software

process tailoring: a systematic review,” in Proceedings

of the 2013 International Conference on Software and

System Process. ACM, pp. 171–180.

Koch N., 2006. “Transformations techniques in the model-

driven development process of UWE”. In: 6th

International Conference on Web Engineering

(ICWE), Volume 155 Article N° 3. ACM, California.

Kroiß C., and Koch N., 2008. “UWE metamodel and pro-

file: user guide and reference”. LMU, Technical Report.

Martínez-Ruiz T., Munch J., García F., and Piattini M.,

2012. “Requirements and constructors for tailoring

software processes: a systematic literature review,”

Software Quality Journal, vol. 20, no. 1, pp. 229–260.

Pedreira O., Piattini M., Luaces M. L., and Brisaboa M.

R., 2007.“A Systematic Review of Software Process

Tailoring,” vol. Volume 32 Issue 3. New York, NY,

USA: ACM SIGSOFT Software Engineering Notes,

pp. 1–6.

Silvestre L., Bastarrica M. C., and Ochoa S. F., 2014. “A

model-based tool for generating software process

model tailoring transformations,” in ModelDriven

Engineering and Software Development

(MODELSWARD), 2014 2nd International Conference

on. IEEE, pp. 533–540.

Xu P. and Ramesh, B., 2008. “Using process tailoring to

manage software development challenges,” IT

Professional, vol. 10, no. 4, pp. 39–45.

