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Abstract

This article examines several strategies which can be used to derive molecu-

lar equilibrium structure from experimental data and extends our previously

suggested method to HN+
2 . Full-dimensional rovibrational calculations are

carried out for eight isotopologues of HN+
2 using two ab initio potential en-

ergy representations. Rovibrational energies computed for rotational angu-

lar momenta J as high as 15 in both parities are used to derive theoretical

vibration-rotation corrections to ground-state rotation constants B0. These

results are combined with the available experimentally derived B0 values to

determine the r0, rα, and re structures of the ion. Higher-order corrections

beyond the vibration-rotation α constants are found to be essential for the

structure determination. Our analysis is supported by graphical represen-

tations, illustrating the anticorrelation of the structural parameters. The r0

structure is rationalized in terms of a structure projected onto the principal
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a axis and examined for the isoelectronic series of linear triatomic molecules

HCO+, HCN, HN+
2 , HNC, and HOC+.

Keywords:

HN+
2 , Equilibrium structure, r0 structure, Rovibrational calculations, α

constants, Theoretical spectroscopy

1. Introduction

Determination of the equilibrium structure of molecules is considered as

one of the most basic goals of spectroscopy. Geometric parameters can be un-

ambiguously deduced only from equilibrium rotational constants Be, which

are unfortunately not directly accessible experimentally. Theoretical models

have to be used to account for the effect of the vibration-rotation coupling and

to provide corrections to the effective rotational constants Bv for a vibrational

state v, with a special interest in the zero-point correction, ∆B0 = Be −B0.

Except for diatomics and nonlinear triatomics the conversion of

equilibrium rotational constants into an equilibrium structure re-

quires informations on more than one isotopologue. The standard

procedure assumes a common mass-independent structure, which

is equivalent to the Born-Oppenheimer picture.

The concept of the equilibrium structure is theoretically well

founded within the Born-Oppenheimer approximation, that is, a

molecule is described by a mass-independent potential energy sur-

face (PES), so that the minimum of the PES uniquely defines the

equilibrium structure of the molecule. Numerically exact quantum-

mechanical calculations are then needed to establish a direct link
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between a given PES and spectroscopic observables. Such an ap-

proach employs the exact rovibrational kinetic energy operator

(no dynamical approximation) and the full PES (no re-expansion)

in combination with numerically convenient methods, yielding a

complete answer about molecular rovibrational dynamics associ-

ated with the applied PES. A common representation connecting

experimental approaches and theory can be obtained by fitting

the computed rovibrational energies to appropriate spectroscopic

Hamiltonians.

We have recently developed a two-step procedure for deriving molecular

equilibrium structures from numerically exact rovibrational energies [1, 2].

This approach was applied to determine spectroscopic parameters for iso-

topic variants (isotopologues) of the formyl cation, HCO+, and the isoformyl

cation, HOC+, in excellent agreement with available experimental results [1].

The aim of the present work is to provide a similar spectroscopic characteri-

zation of the protonated nitrogen molecule, HN+
2 , also known as diazenylium.

This is a linear molecular ion, characterized by a degenerate bending ν2 vibra-

tion, a symmetric stretching ν1 vibration, and an antisymmetric stretching

ν3 vibration.

In the present paper, we use two three-dimensional potential energy sur-

faces, developed for HN+
2 in its ground electronic state, X̃1 Σ+, by ab initio

computation. The first is the CCSD(T)/cc-pVQZ PES of Schmatz [3, 4],

hereafter called SM PES. This is a global potential energy representation

with two equivalent colinear minima, separated by an isomerization barrier

17 137 cm−1 above the energy minima at the linear geometries. Low-lying
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states of HN+
2 are localized in one of the two wells. The double-well and

nuclear spin symmetries are lifted for mixed nitrogen isotope forms. These

issues are relevant when studying, for instance, interstellar isotope fraction-

ation [5].

As the second PES, we use the ACTQ5+rel+ACPF quartic internal co-

ordinate force field (QFF) of Huang, Valeev, and Lee [6], hereafter called

HVL QFF. This PES includes one-particle basis set extrapolation, core-corre-

lation, and scalar relativity, as well as higher-order correlation terms ob-

tained by the averaged coupled-pair functional (ACPF) method. Huang et

al. also reported corresponding vibrational frequencies and rotational pa-

rameters, computed by second-order vibrational perturbation theory. For

our rovibrational variational calculations, HVL QFF was first transformed to

Morse-cosine coordinates, as recommended previously [6, 7].

Quantum mechanical calculations of rovibrational energies for

the protonated nitrogen molecules are performed combining a discrete

variable representation for the angular motion with distributed Gaussian ba-

sis functions for the radial coordinates [8, 9]. Atomic masses are applied, as

commonly done in similar studies. The computed rovibrational energies are

used to extract the parameters of appropriate spectroscopic Hamiltonians in

a least-squares analysis and to determine theoretical vibration-rotation cor-

rections to the zero-point rotational constant B0 (Section 2). The results for

HN+
2 and DN+

2 are first employed to derive the stucture of the ion (Section 3)

and to analyse the correlation between structural parameters (Section 4).

The scope of the study is then broadened to include eight experimentally ob-

served isotopologues (Section 5). To analyze the notion of the r0 struc-
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ture, obtained directly from the B0 values, a comparative study of

the isoelectronic series of linear triatomic molecules HCO+, HCN,

HN+
2 , HNC, and HOC+ is carried out, revealing that the r0 structure

can be related to a structure projected onto the principal a axis (Section 6).

Our theoretical procedure produces a highly consistent set of data, obtained

within the Born-Oppenheimer approximation. Limitations arising from this

approximation are also reviewed (Section 7).

2. Corrections to zero-point rotational constants

Following common practice of experiment, the rovibrational energies com-

puted for a vibrational Σ state v are fitted to a standard spectroscopic power

series expansion,

Ev(J) =Tv +BvJ(J + 1)−Dv J
2(J + 1)2 + · · · , (1)

where Tv is the vibrational term energy, Bv the effective rotational constant,

Dv the quartic centrifugal distortion constant, and so on, in a vibrational

state v. For a vibrational Π state, we use

Ev(J) = Tv +Bv

[
J(J + 1)− `2

]
−Dv

[
J(J + 1)− `2

]2
+ · · · (2)

±1
2

[
qvJ(J + 1) + qJv J

2(J + 1)2 + · · ·
]
,

where the rotational dependence of the `-type doubling contribution is ex-

pressed in terms of J(J + 1), using the constants qv, q
J
v , and so on.

We define the ground state vibrational correction ∆B0 to the equilibrium

rotational constant Be as

∆B0 = Bth
e −Bth

0 , (3)
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where Bth
e and Bth

0 are theoretical values of the rotational constant at equi-

librium and in the ground vibrational state, respectively. In keeping with

the notation previously used [1, 2], the spectroscopic correction S0 to Be is

computed as

S0 =1
2

(α1 + α3) + α2 , where αi = B0 −Bi , (4)

with αi denoting the vibration-rotation interaction constant for the ith vibra-

tional mode. Replacing B0 and Bi with their theoretical values, we obtain

the theoretical estimate Sth
0 . The spectroscopic correction S0 is accessible

experimentally when the rotational constants for the ground state and the

three fundamental vibrations are all known.

In the present work, rovibrational calculations for HN+
2 and DN+

2 are

carried out for total rotational angular momenta as high as J = 15 for both

SM PES and HVL QFF. The rovibrational energies are fitted using the third-

order, fourth-order, and fifth-order spectroscopic Hamiltonians of Eqs. (1)

and (2), producing three sets of parameters called Fit 3, Fit 4, and Fit 5, re-

spectively. The fitted rotational energies go up to approximately 370 cm−1

(11 THz). The fit standard deviations are better than 50 kHz for Fit 3, 40 Hz

for Fit 4, and 5 Hz for Fit 5. A linear unweighted least-squares method [10]

is applied to obtain Fit 3-Fit 5, implicitly assuming that the computed rovi-

brational energies form consistent sets of data of uniform quality. This as-

sumption is reasonable for the modelling of the rotational transitions within

a single vibrational state.

The potential energy minima of SM PES and HVL QFF are collected

in Table 1, along with the associated equilibrium rotational constants Be.

The equilibrium bond distances re for SM PES are approximately 0.003 Å
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Table 1: Potential energy minima rthe (in Å), associated ro-

tational constants Bth
e (in MHz), and vibrational-rotation

corrections ∆B0 and Sth
0 (both in MHz) obtained for the

two potential energy representations.a

Parameter SM PES HVL QFF

rthe (HN) 1.034 02 1.033 28

rthe (NN) 1.095 62 1.092 78

Bth
e (HN+

2 ) 46 627.52 46 844.35

Bth
e (DN+

2 ) 38 560.87 38 727.41

Fit 3

∆B0(HN+
2 ) 240.150 5(2) 240.550 5(2)

∆B0(DN+
2 ) 160.658 8(2) 160.648 7(2)

Sth
0 (HN+

2 ) 245.748 1(11) 244.370 4(11)

Sth
0 (DN+

2 ) 153.498 9(11) 151.743 7(12)

Fit 4

∆B0(HN+
2 ) 240.148 807 97(29) 240.548 864 05(31)

∆B0(DN+
2 ) 160.657 278 90(33) 160.647 195 45(36)

Sth
0 (HN+

2 ) 245.746 513 70(159) 244.368 722 13(174)

Sth
0 (DN+

2 ) 153.496 193 94(240) 151.740 733 12(325)

Fit 5

∆B0(HN+
2 ) 240.148 806 33(5) 240.548 862 29(4)

∆B0(DN+
2 ) 160.657 277 07(1) 160.647 193 41(2)

Sth
0 (HN+

2 ) 245.746 511 51(20) 244.368 722 57(17)

Sth
0 (DN+

2 ) 153.496 193 55(12) 151.740 738 02(18)

a Values in parentheses show one standard error to the last

significant digit from the least-squares procedure.
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longer than those for HVL QFF. Accordingly, Be for SM PES is approxi-

mately 200 MHz smaller than Be for HVL QFF. This trend is expected, given

the different electronic structure methods used to construct the two potential

energy representations.

Table 1 also provides the theoretical vibration-rotation corrections ∆B0

and Sth
0 to the ground vibrational state. Standard deviations of ∆B0 and Sth

0

are derived from the errors on the fitted spectroscopic parameters B0, B1, B2,

and B3, which are in order of 10−4 MHz for Fit 3 to 10−8 MHz for Fit 5.

Comparison of the values for ∆B0 and Sth
0 from Fit 4 and Fit 5 shows that

the physical uncertainties related to the choice of the fitting model (number

of centrifugal distortion constants) are at most 5·10−6 MHz. This indicates

an extremely high internal consistency in the set of computed rovibrational

energy levels but is unrelated to differences with respect to experiment.

In Table 1, the values of ∆B0 obtained for the two potential energy sur-

faces agree within 0.4 MHz and the values of Sth
0 within 1.8 MHz. For a given

PES, the difference between ∆B0 and Sth
0 is smaller than 10 Mz, ∆B0 being

smaller (larger) than Sth
0 for HN+

2 (DN+
2 ). In our previous studies, we found

that ∆B0 and Sth
0 differ by up to 50 MHz for the isotopic variants of HCO+

and even 100 MHz for the isotopic variants of HOC+ [1, 2].

From the experimental rotational constants Bexp
v reported by Yu et al.

[11] for the ground vibrational state and three fundamental vibrations, the ex-

perimental vibration-rotation interaction constants [αexp
1 , αexp

2 , αexp
3 ] are de-

termined to be [ 377.9, 9104.5, 330.2 ] in MHz for HN+
2 and [ 346.1, 9136.0, 238.6 ]

for DN+
2 . These values yield experimental spectroscopic corrections as Sexp

0 (HN+
2 ) =

249.6 MHz and Sexp
0 (DN+

2 ) = 156.1 MHz. The theoretical results Sth
0 in Ta-
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ble 1 agree with the experimental counterparts within 5 MHz. Experimental

uncertainties on Bexp
v are in the range up to 2 kHz.

Huang et al. [6] reported spectroscopic parameters obtained by the vi-

brational second-order perturbational approach, yielding the perturbational

corrections Sp0(HN+
2 ) = 242.5 MHz and Sp0(DN+

2 ) = 161.3 MHz. The value

of Sp0(HN+
2 ) agrees within 2 MHz with Sth

0 (HN+
2 ) of Table 1. On the other

hand, Sp0(DN+
2 ) differs from Sth

0 (DN+
2 ) by almost 10 MHz, being much closer

to ∆B0(DN+
2 ) within 0.7 MHz instead. The perturbational vibration-rotation

interaction constants [αp1, α
p
2, α

p
3 ] from [6] are explicitly [ 373.8, 9108.5, 328.3 ]

in MHz for HN+
2 and [ 369.9, 9138.8, 230.2 ] for DN+

2 . Our calculations for

HVL PES give [ 379.6, 9110.3, 329.8 ] for HN+
2 and [ 344.3, 9139.7, 238.6 ] for

DN+
2 . Letting ∆i = αpi − αth

i , the differences {∆1,∆2,∆3} amount to {95.8,

1.8, 91.5} for HN+
2 and { 25.6, 0.9, 98.4 } for DN+

2 . It seems that the per-

turbational approach performs less well for DN+
2 and that the agreement of

Sp0(DN+
2 ) with ∆B0(DN+

2 ) is somewhat fortuitous in this case.

3. The equilibrium structure from the measurements on two iso-

topologues

The moment of inertia of a linear triatomic molecule ABC, with masses

m
A
, m

B
, and m

C
lying along the molecular axis, is

I =
m

A
m

BC

M
d 2
1 +

m
AB
m

C

M
d 2
2 + 2

m
A
m

C

M
d1 d2 , (5)

using d1 = r(AB) and d2 = r(BC). For the mass factors, we have m
XY

=

m
X

+m
Y

and M = m
A

+m
BC

. In terms of Jacobi coordinates r and R,

r = d2 and R = d1 + cm d2 , (6)
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where cm = m
C
/m

BC
, the moment of inertia I reads

I = µr r
2 + µ

R
R2 , (7)

with µr = m
B
m

C
/m

BC
and µ

R
= m

A
m

BC
/M .

Geometric arrangements of linear triatomic molecules are described by

two bond distances. Spectroscopic measurements on at least two isotopic

variants of a molecule are thus required for the determination of its equilib-

rium structure. We will first focus on triatomic molecules of the form AB2,

such as HN+
2 and DN+

2 , for which d2 = r(NN) and cm = 1/2. The rotational

constants B
(1)
e and B

(2)
e for two isotopologues provide equilibrium moments

of inertia I
(i)
e

I(i)e =
~2

2B
(i)
e

(8)

for i = 1 and 2. The equilibrium distances follow as

r2e =F 91
m

[
µ(2)

R
I(1)e − µ(1)

R
I(2)e

]
,

R2
e =F 91

m

[
µ(1)
r I(2)e − µ(2)

r I(1)e

]
,

(9)

where

Fm = µ(1)
r µ(2)

R
− µ(2)

r µ(1)
R
, (10)

implying

d2e = re and d1e = Re − 1
2
re . (11)

Uncertainties of the equilibrium distances can be estimated from the uncer-

tainties of the equilibrium rotational constants by applying rules for error

propagation. The corresponding results are summarized in Table 2, which
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Table 2: Parameter uncertainties from the error propagation, with δq denoting the uncer-

tainty of q and σ(i) the uncertainty of the equilibrium rotational constant B
(i)
e of the ith

isotopologue. The mass factor Fm is defined by Eq. (10).

Parameter Uncertainty

I
(i)
e δ

(i)
I = I

(i)
e [B

(i)
e ]91 σ(i)

re δr = 1
2
r91e F 91

m

[
µ
(2)
R δ

(1)
I + µ

(1)
R δ

(2)
I

]
Re δR = 1

2
R91
e F

91
m

[
µ
(2)
r δ

(1)
I + µ

(1)
r δ

(2)
I

]
d1e δd1 = δR + 1

2
δr

shows that the uncertainties of the structural parameters are linearly propor-

tional to the uncertainties σ(i) of B
(i)
e . Rotational constants from microwave

measurements are obtained regularly with much better accuracy than those

from infrared measurements, so they are the preferred choice for the structure

determination.

In the derivation of geometric parameters from experimentally determined

Bexp
0 values, three types of corrections to ground-state rotation constants are

considered, leading to three different types of structure definitions. The use of

Bexp
0 , uncorrected for vibrational effects, provides the so-called r0 structure.

Applying the spectroscopic correction S0 to Bexp
0 , we generate a structure

called the rα structure. Finally, Bexp
0 + ∆B0 yields the re structure.

The geometric r0, rα, and re parameters derived using only data for HN+
2

and DN+
2 are summarized in Table 3. The millimeter wave spectroscopy

values of Yu et al. [11] reported as Bexp
0 (HN+

2 )=46 586.875 29(49) MHz and

Bexp
0 (DN+

2 )=38 554.749 38(93) MHz were combined with the vibration-rotation
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corrections S0 and ∆B0 provided in Table 1. The structural parameters were

then obtained using the analytical solutions of Eqs. (9)-(11).

The error limits in Table 3 are determined with the help of Table 2. The

accuracy of the experimental Bexp
0 values is in order of 10−4 MHz. As the

accuracy of S0 and ∆B0 from Fit 5 in Table 1 is 10−7 MHz or better, the

uncertainties of the structural parameters in Table 3 are primarily defined by

σi of Bexp
0 . This is important so as not to spoil the information contained

in Bexp
0 . We also note that Fit 4 provides values identical to those obtained

using Fit 5. The results derived for Fit 3, which have approximately twice

the uncertainty, are found to be statistically identical to the values shown in

Table 3. The accuracy of the bond lengths is estimated to be much better

than 10−6 Å in Table 3. This information should be viewed only as a mea-

sure of quality of the data sets and the procedure applied in the derivation

according to the chosen mathematical model.

In Table 3, the values of rα(HN) are longer than re(HN) by approxi-

mately 0.0015 Å, whereas rα(NN) are shorter than re(NN) by approximately

0.0003 Å. The r0 structure, computed from the uncorrected experimental

Bexp
0 values, differ from rα and re by up to 0.004 Å. The results derived for

SM PES and HVL QFF agree with each other within 9.5·10−5 Å for the rα

structure and within 4·10−5 Å for the re structure, differing thus beyond the

stated error estimates. Bearing in mind that the two ab initio potential en-

ergy surfaces are of different nature, the agreement of the resulting structural

parameters can be viewed as very satisfying.

The last two rows in Table 3 show experimental equilibrium structures.

Owrutsky et al. [12] combined their infrared measurements with microwave

12



Table 3: Parameters (in Å) of the r0, rα, and re structures de-

termined using the experimental ground state rotational constants

reported for HN+
2 and DN+

2 by Yu et al. [11]. The theoretical cor-

rections ∆B0 and Sth
0 obtained in Fit 5 of Table 1 are applied. The

experimental equilibrium structures (Exp) reported by Owrutsky

et al. (OGM) [12] and Amano et al. (AHT) [13] are additionally

shown. Rotational constants are in MHz.a

r(HN) r(NN) B(HN+
2 )

r0 1.030 878 97(17) 1.096 748 74(4) 46 586.8753(5)

SM PES

rα 1.034 635 22(17) 1.092 689 15(4) 46 832.6218(5)

re 1.033 169 52(17) 1.093 033 35(4) 46 827.0241(5)

HVL QFF

rα 1.034 730 33(17) 1.092 690 63(4) 46 831.2440(5)

re 1.033 209 28(17) 1.093 020 62(4) 46 827.4242(5)

Exp

OGM 1.033 59(43) 1.092 766(94) 46 840.40(110)

AHT 1.034 60(14) 1.092 698(26) 46 832.45(71)

a Values in parentheses show error limits obtained using Table 2.
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and infrared data coming from different experimental groups, and fitted all

spectral data in a global least-squares analysis to a general spectroscopic

expansion of the form

Gv,`,J =
3∑
i

(
vi + 1

2
di
)
ωi

+
3∑

i,k≥i

(
vi + 1

2
di
) (
vk + 1

2
dk
)
xik

+
(
Bv ± 1

2
qv
) [
J(J + 1)− `2

]
−Dv

[
J(J + 1)− `2

]2
,

(12)

where the effective rotational constant Bv for the vibrational state v is given

by

Bv =Be −
3∑
i

βi
(
vi + 1

2
di
)

+
3∑
i,k

γik
(
vi + 1

2
di
) (
vk + 1

2
dk
)
.

(13)

In the model of Eq. (12), the equilibrium rotational constant Be appears as

a fitting parameter. The constant βi in Eq. (13) is sometimes called αi and

is close to, but actually not identical with the αi constant defined in Eq. (4)

as αi = B0 −Bi. For the constant β1, for instance, we have

β1 =B0 −B1 + 2γ11 + γ12 + 1
2
γ13

=α1 + 2γ11 + γ12 + 1
2
γ13 .

(14)

Another set of experimental data in Table 3 is due to Amano et al. [13],

who reported submillimeter-wave spectroscopy measurements on HN+
2 and

DN+
2 in the ground state and for all fundamentals. To estimate higher-order

14



corrections to the ground-state rotation constants, Amano et al. [13] applied

higher-order vibration-rotation coupling constants γij available from other

experimental studies on HN+
2 and a similar system (HCN).

The experimental results in Table 3 differ from each other by up to 0.001 Å

for the distances and by 8 MHz for Be, i.e. considerably beyond the stated

error limits. To investigate this situation, we compare in Table 4 the struc-

tural rα parameters obtained using three sets of experimental data, which

include in addition to B0 also the values of B1, B2, and B3 [11, 12, 13]. As

seen there, the three experimental rα structures are statistically identical,

implying that the difference between the experimentally derived equilibrium

bond distances re in Table 3 is solely due to the use of higher-order vibration-

rotation contributions.

Table 4 also provides the parameters of the pure theoretical rα struc-

ture, determined from the theoretical Bth
0 , Bth

1 , Bth
2 , and Bth

3 values calcu-

lated for SM PES and HVL QFF. Comparing the rα distances of Table 4

with the corresponding equilibrium re bond lengths shown in Table 1, we see

that rα(HN)-re(HN)=0.0015 Å and rα(NN)-re(NN)=-0.0003 Å for both of the

PESs. The rα results do not reproduce the re values, implying that S0 is not

sufficient as a zero-point correction. This finding is important for both

experimental and theoretical spectroscopic studies. At the same

time, the rotational constant Bα = B0 + S0 in Table 4 differs from the true

Be of Table 1 by only a few MHz (up to 6 MHz).

The higher-order vibration-rotation contribution C0 to the ground-state

rotational constant is defined here by

C0 = Bα −Be , so that C0 = S0 −∆B0 . (15)
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Table 4: Structural rα parameters (in Å) and associated rotational

constants Bα (in MHz).a The experimental values are obtained using

the spectroscopic data of Owrutsky et al. (OGM) [12], Amano et al.

(AHT) [13], and Yu et al. (YPD) [11]. The theoretical values are

derived for both SM PES and HVL QFF.

rα(HN) rα(NN) Bα(HN+
2 )

Experiment

OGM 1.034 6(15) 1.092 6(3) 46 835.8(35)

AHT 1.034 632(3) 1.092 637 2(6) 46 836.462(7)

YPD 1.034 635(1) 1.092 636 7(2) 46 836.463(4)

Theory

SM PES 1.035 50 1.095 27 46 633.12

HVL QFF 1.034 80 1.092 45 46 848.17

a Values in parentheses show error limits obtained using Table 2.
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Table 5: Higher-order correction term C0 (in MHz) effectively used by Owrutsky et al.

(OGM) [12] and Amano et al. (AHT) [13], along with the theoretical counterparts calcu-

lated for both SM PES and HVL QFF.

Experiment Theory

OGM AHT SM PES HVL QFF

C0(HN+
2 ) -4.6 4.0 5.6 3.8

C0(DN+
2 ) -12.3 2.7 -7.2 -8.9

The explicit values of C0 are shown in Table 5. There, C0 are up to about 12

MHz (0.000 4 cm−1), so they are much smaller than S0 of Table 1. Neverthe-

less, these higher-order correction terms C0 have important consequences on

the structural parameters, as easily visible in Table 3.

Whereas the theoretical C0 corrections for HN+
2 and DN+

2 have differ-

ent signs in Table 5, the experimental C0 values for the two isotopic vari-

ants have the same sign. Since no sufficient information was available for

DN+
2 , Amano et al. [13] estimated C0(DN+

2 ) from the value C0(HN+
2 ) by

assuming its proportionality to the square of the rotational constant, so that

C0(HN+
2 ) and C0(DN+

2 ) are both positive in Table 5. In the fitting pro-

cedure to Eq. (12), Owrutsky et al. [12] effectively included only one of

the six higher-order coupling constants γij, namely γ12, which is reported

to be γ12(HN+
2 )= 9.31(17) MHz and γ12(DN+

2 )= 24.60(78) MHz. In view of

Eq. (13), we then have C0 = −γ12/2, so that C0(HN+
2 ) = −4.6 MHz and

C0(DN+
2 ) = −12.3 MHz, as seen in Table 5.
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4. Correlation between the structural parameters

Replacing I, d1, and d2 in Eq. (5) with their values at equilibrium, we

easily find that

d1e = −mC
d2e

m
BC

+

√
M

m
A
m

BC

(
Ie −

m
B
m

C

m
BC

d 2
2e

)
(16)

or equivalently

d2e = −mA
d1e

m
AB

+

√
M

m
AB
m

C

(
Ie −

m
A
m

B

m
AB

d 2
1e

)
. (17)

Accordingly, a manifold of pairs (d1e, d2e) will reproduce the same Ie value,

that is, the same equilibrium rotational constant Be. The structural param-

eters d1e and d2e are anticorrelated by Eqs. (16) and (17), as a decrease of d1e

in (d1e, d2e) can be compensated by an increase of d2e for a given Be.

Figure 1 is a graphical representation of the pairs (d1e, d2e) which repro-

duce the experimental equilibrium rotational constants of Owrutsky et al.

[12] and Amano et al. [13] for HN+
2 and DN+

2 . The values of Be(HN+
2 )

are listed in Table 3. The corresponding Be(DN+
2 ) values are reported to be

38 722.9(25) and 38 708.38(58) MHz in [12] and [13], respectively. The case

involving Bexp
e of Owrutsky et al. [12] is denoted with XOw and of Amano

et al. [13] with XAm, using X=H and X=D for HN+
2 and DN+

2 , respectively.

The point of intersection of two lines is a structure (d c1e, d
c
2e) common to both

isotopic forms, meaning that (d c1e, d
c
2e) simultaneously reproduces the rota-

tional constants Be(HN+
2 ) and Be(DN+

2 ). The triangular points (N) marked

with Ow and Am in Fig. 1 are the experimental equilibrium distances re-

ported by Owrutsky et al. [12] and Amano et al. [13], respectively, given

18



explicitly in Table 3. The equilibrium bond distances derived from the re-

sults of Owrutsky et al. [12] using the analytical solutions of Eqs. (9)-(11)

are roe(HN)=1.033 48(43) Å and roe(NN)=1.092 793(93) Å. This pair is marked

with Owcorr (•) in Fig. 1. The two solutions, Ow and Owcorr, appear as dif-

ferent in Fig. 1. Taking into account their uncertainties, they are, strictly

speaking, statistically compatible. Given Fig. 1, we recommend to use

our results roe(HN) and roe(NN) for future reference to the experi-

mental equilibrium structure of Owrutsky et al. [12].

The experimental re(NN) distances from [12] and [13] agree within the

larger error bar of the earlier study, while the re(HN) distances are sta-

tistically incompatible. In order to quantitatively account for the intrinsic

strong correlation between these structural parameters we used the stated

error bars of the experimental Be values and a Gaussian error distribution

model and Eqs. (16) and (17) to construct the resulting probability densities

P (re(HN), re(NN)) for the two experiments. The results are shown in Fig. 2.

For an easier comparison both probability densities have been scaled such

that their maximum value is equal to one. These most likely re(HN), re(NN)

combinations correspond to the line intersections in Fig. 1 and are indicated

by the solid innermost contours at P = 0.99. The other contours delimit the

domains whose integrals correspond to 68.1% (dashed) and 95.3% (dotted)

of the integral over the re(HN), re(NN) plane for the two experiments. These

integrated probability values correspond to the 1σ and 2σ confidence inter-

vals of a one-dimensional Gaussian. This two-dimensional analysis reveals

that the two experimentally derived re structures are in fact incompatible

for both parameters and that the projection on the re(NN) axis masks this
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Figure 1: Pairs (d1e, d2e) reproducing experimental rotational constants of Owrutsky et

al. [12] and Amano et al. [13] for HN+
2 and DN+

2 , where d1e = re(HN) and d2e = re(NN).

For more details, see Section 4 of the main text.

important fact.

5. The equilibrium structure from measurements on eight isotopo-

logues

The rotational spectra of the protonated nitrogen molecule have been

recorded at millimeter and sub-millimeter wavelengths for eight isotopologues

involving 14N, 15N, H, and D [11, 14, 15]. Combining the values of Bexp
0

from these studies with the theoretical vibration-rotation corrections from

the present work, we produce three models Best based on Bexp
0 , Bexp

0 + Sth
0 ,
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Figure 2: Probability densities P (re(HN), re(NN)) constructed from experimental Be rota-

tional constants and their uncertainties derived by Owrutsky et al. [12] (left) and Amano

et al. [13] (right) for HN+
2 and DN+

2 . Dashed and dotted contours enclose 68.1% and

95.3% of the total probability densities.
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and Bexp
0 + ∆Bth

0 , which are used to determine the r0, rα, and re structures,

respectively, by means of a nonlinear least-squares technique (the Levenberg-

Marquardt algorithm) [10].

The r0, rα, and re values computed from the data for eight isotopologues

are summarized in Table 6. They are obtained in weighted least-squares fits.

The laboratory results of Yu et at. [11] and Dore et al. [15] are employed,

with experimental uncertainties varying from 0.000 13 MHz (D15N+
2 ) [15] to

0.000 93 MHz (DN+
2 ) [11]. The uncertainties for the theoretical vibration-

rotation corrections are taken from Table 1. To test the sensitivity of our re-

sults to these values, we also carried out unweighted nonlinear least-squares

fits, denoted by Fit U in Table 6. The equilibrium distances found in the orig-

inal and Fit U agree within 2·10−6 Å. In Set C, the value for Bexp
0 (HN+

2 ) given

as 46 586.875 29(49) MHz in [11] is replaced with the value of Cazzoli et al.

[14] reported to be 46 586.875 49(18) MHz. The resultant re values for Set

C agree within 8·10−6 Å with re from the original fits and are com-

patible with them within one standard deviation. In Fit Fi, we em-

ployed re associated with one PES in combination with the corrections ∆B0

from the other PES. In Fit F2 for SM PES, for instance, re(NN) is kept con-

stant at the value 1.093 017 Å associated with HVL QFF, yielding the bond

distance re(HN)=1.033 219(5) Å, which agrees with re(HN)=1.033 209(9) Å

for HVL QFF within one standard deviation. This increase of re(HN) result-

ing from the shortening of re(NN) is consistent with the fact that re(NN)

and re(HN) are anticorrelated.

The equilibrium distances in Table 6 show spreads in the re(HN) and

re(NN) values of 5·10−5 Å and 2·10−5 Å, respectively. The re(HN) values for
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Table 6: Parameters of the r0, rα, and re structures (in Å) and the

corresponding rotational constants B (in MHz), derived using the

data for eight isotopologues of the protonated nitrogen molecule.a

Structure r(HN) r(NN) B(HN+
2 ) rmsb

r0 1.030 86(21) 1.096 67(5) 46592.5(65) 2.93

SM PES

rα 1.035 01(16) 1.092 63(4) 46 831.9(52) 2.06

re 1.033 173(9) 1.093 029(2) 46 827.28(28) 0.13

re (Fit U) 1.033 172(10) 1.093 031(2) 46 827.20(32) 0.11

re (Set C) 1.033 166(11) 1.093 032(3) 46 827.21(34) 0.11

re (Fit F1) 1.033 209 1.093 020(1) 46 827.44(8) 0.22

re (Fit F2) 1.033 219(5) 1.093 017 46 827.56(8) 0.29

HVL QFF

rα 1.035 19(19) 1.092 62(5) 46 830.6(62) 2.43

re 1.033 209(9) 1.093 017(2) 46 827.70(28) 0.14

re (Fit U) 1.033 210(11) 1.093 018(3) 46 827.61(34) 0.13

re (Set C) 1.033 201(12) 1.093 019(3) 46 827.62(36) 0.12

re (Fit F1) 1.033 173 1.093 026(1) 46 827.42(8) 0.20

re (Fit F2) 1.033 163(5) 1.093 029 46 827.43(7) 0.23

a Values shown in parentheses are one standard deviation to the last

significant digit from the least-squares procedure. Distances shown

without error limits are kept constant in the fit.

b Root-mean-square error (rms) of the residuals is in MHz.

23



the two PESs agree within 4·10−5 Å and the re(NN) values within 1·10−5 Å.

The estimates for re(HN) and re(NN) reproduce the fitted Best = Bexp
0 +∆B0

values with root-mean-square (rms) deviations in order of 0.1 MHz.

The re results in Table 6, obtained in our combined theoretical-experi-

mental approach, represent best estimates of the structural parameters. The

rthe values for the high-quality ab initio HVL QFF surface deviate from these

estimates by 97 ·10−5 Å for the HN bond length and by 24 ·10−5 Å for the NN

bond length. Our best estimate structures for HCO+ and HOC+ [1, 2] show

comparable agreement with the ab initio structure determined by Koput

[16] at the CCSD(T)/aug-cc-pV7Z level of theory with several high order

corrections.

Table 6 is next compared with Table 3, which was derived by applying the

rotational data for only two isotopologues. The equilibrium bond distances

re(HN) and re(NN) from the two tables agree better than 4·10−6 Å. The

corresponding agreement for r0(HN), r0(NN), and rα(NN) is within 8·10−5 Å

and for rα(HN) within 5·10−4 Å.

The three models for the rotational constant Best are graphically com-

pared in Fig. 3. Ranges of 0.004 Å along the abscissa and 0.001 Å along the

ordinate are used in the two-dimensional graphs at the top and in the middle.

The graph on the bottom covers a range of only 0.0005 Å along the abscissa

and 0.0001 Å along the ordinate. The intersection of the horizontal and ver-

tical dashed lines indicates the structural rg parameters, that is, r0 (top),

rα (middle), and re (bottom) from the all isotope least-squares fits. Their

explicit values are listed in Table 6. Analogous to Fig. 1, a (red) line, repre-

senting one of the hydrogen-containing forms, and a (blue) line, representing
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Figure 3: Pairs of the bond distances r(HN) and r(NN) reproducing Best modeled as

Bexp
0 (top), Bexp

0 +Sth
0 (middle), and Bexp

0 + ∆Bth
0 (bottom) for eight isotopologues of the

protonated molecular nitrogen. Pair solutions for Bexp
0 + ∆Bth

0 (bottom) are shown by

triangular points (N).
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one of the deuterium-containing forms, cross each other in the neighbour-

hood of rg and define a compatible molecular geometry. The spreads of these

crossing points around rg become smaller when viewing Fig. 3 from the top

to the bottom. Theoretical corrections computed for SM PES were applied

in Fig. 3. Graphical representations of the results obtained using HVL QFF

are identical to Fig. 3.

The Born-Oppenheimer approximation defines a mass independent com-

mon structure for all isotopologues. Consequently the correlation lines for

all isotopologues should intersect in a single point. A residual spread could

be indicative of non Born-Oppenheimer effects. It is clear that a search for

such effects requires highly consistent equilibrium structure reconstructions

and our proposed mixed experimental-theoretical method visibly shows the

best internal consistency of the three strategies.

A pair determination of the molecular structure is frequently used in the

literature. In the case when experimental data are known for n isotopic

species, they can be paired in n(n− 1)/2 different ways. From eight isotopic

variants of HN+
2 , we thus have 28 possible pair solutions. These are shown for

the case when Best = Bexp
0 + ∆B0 in Fig. 3 (bottom). Only 18 solutions are,

however, visible over the range shown there. The mean values rap of all 28

pair solutions are 1.033 27 Å for rap(HN) and 1.093 01 Å for rap(NN), yield-

ing Bap(HN+
2 )=46 827.5 MHz. Hence, rap(HN) is 10−4 Å longer and rap(NN)

is 2·10−5 Å shorter than their re counterparts in Table 6. The rap structure

is sensitive to the choice of pairs or to the choice of parent species when

Kraitchman-Costain substitution formulas [17, 18] are applied. In view

of Fig. 3, we see that nonlinear least-squares methods appear more appro-
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priate for the determination of molecular structures than the pair solution

approach. This conclusion is in line with our previous finding for HCO+ and

HOC+ [2].

15N-substituted forms of HN+
2 were first observed by Szanto et al. [19].

From the rotational J = 0− 1 transition available for six isotopic forms at the

time, these authors deduced a r0 structure given by rs(HN) = 1.032 00(10) Å

and rs(NN) = 1.094 70(40) Å. Using their rotational constants, we, however,

find in an unweighted least-squares procedure that r0(HN) = 1.030 90(40) Å

and r0(NN) = 1.096 70(8) Å. These improved r0 values are in excellent agree-

ment with the r0 parameters shown in Table 6. Another r0 estimate is due to

Warner [20], who applied Kraitchman’s relations for different parent species

formed from a set of eight isotopologues. His pair solutions for eight par-

ent species exhibit a large spread of 3·1094 Å, with a mean at rap(HN) =

1.030 41 Å and rap(NN) = 1.094 90 Å. Our least-squares solution derived from

the data of Warner is r0(HN) = 1.030 90(20) Å and r0(NN) = 1.096 70(6) Å,

in good agreement with the r0 parameters of Table 6. The r0 values de-

rived here from the experimental data of Szanto et al. [19] and of

Warner [20] are recommended for future reference.

6. The r0 structure

To a first approximation, a molecule can be viewed as a set of oscillators,

each of which executes vibrations about a well-defined equilibrium position

re. The actual bond lengths in a vibrating molecule are then expected to

be larger than the corresponding re values, that is, r0 > re for the ground

vibrational state. This relation does not necessarily hold for linear molecules.
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Figure 4: Jacobi coordinates (r,R, θ), the body-fixed z axis, the principal a and b axes,

and the third Euler angle ψ for a triatomic molecule ABC.

We see, for instance, that r0(HN) < re(HN) for HN+
2 in Tables 3 and 6.

In the present rovibrational calculations, we have employed orthogonal

(Jacobi) internal coordinates (r, R, θ) in the body-fixed formulation, where

r is the NN bond length, R the distance from the proton to the center of mass

of the N-N subunit, and θ the angle between the Jacobi vectors r and R. The

body-fixed z axis is aligned with the bond-distance vector r and the body-

fixed z∧x plane coincides with the molecular plane [21]. Our coordinates are

schematically depicted in Fig. 4 for the case of a general triatomic molecule

ABC.

The rotational contribution to the kinetic energy is strictly diagonal for

the principal axis system. The direction perpendicular to the molecular plane

is always a principal axis for triatomic molecules, that is, c = y. As seen in

Fig. 4, the principal a and b axes are rotated in the molecular plane by an
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angle ψ relative to the body-fixed z and x axes, where

tan(2ψ) = − µ
R
R2 sin(2θ)

µ
R
R2 cos(2θ) + µr r2

. (18)

The angle ψ is the third Euler angle defining the instantaneous principal axis

reference frame.

The vibrationally averaged structure of a linear molecule is nonlinear.

This is seen in Table 7, where we compare the vibrationally averaged geome-

tries in the ground vibrational state for the isoelectronic series of linear tri-

atomic molecules HCO+, HCN, HN+
2 , HNC, and HOC+. Both hydrogen con-

taining and deuterium containing isotopic forms are considered. In these cal-

culations, SM PES is used for HN+
2 , a global three-dimensional CCSD(T)/cc-

pVQZ PES for HCO+/HOC+ [9], and a CCSD(T)/aug-cc-pCVQZ PES for

HCN/HNC [22]. The experimental r0 parameters derived for HCN and HNC

by Pearson et al. [23] are used in Table 7.

In addition to the expectation value 〈θ〉 of the Jacobi angle, Table 7 also

provides the expectation value of the Legendre polynomial P2 = (3 cos2 θ −

1)/2 and the expectation value of the Euler angle ψ. The amplitude of the

bending motion varies between 7◦ for DCO+ and 16◦ for HOC+. This evolu-

tion is best demonstrated by Fig. 5, showing the minimum energy paths along

the Jacobi angle. The stiffest profile there belongs to HCO+ and the softest

to HOC+. The effective bending wavenumbers ∆E2 in Table 7 are computed

as E(0, 11, 0; 1, 1)−E(0, 0, 0; 1, 1), with E(v1, v
`
2, v3; J, p) denoting the energy

of the vibrational state (v1, v
`
2, v3) for rotational angular momentum J and

parity p. The highest ∆E2 value is associated with HCO+ and the lowest

with DOC+.

In spectroscopic studies, the r0 structure is derived directly from the
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Figure 5: Minimum energy paths along the Jacobi angle θ measured relative to the energy

of the respective optimum equilibrium configuration for the isoelectronic series of linear

triatomic molecules HCO+, HCN, HN+
2 , HNC, and HOC+.

experimentally determined zero-point rotational constants B0. For linear

triatomic molecules this approximation effectively means that

I0 = µrr
2
0 + µ

R
R2

0 , (19)

where I0 = ~2/2B0. The values of r0 and R0, computed using Eq. (19), differ

from the expectation values 〈r〉 and 〈R〉 since the vibrationally averaged

structure is nonlinear, as exemplified in Table 7. As a way of linearizing a

real vibrating molecule, we introduce here a structure projected onto the

principal a axis (the axis with least moment of inertia), for which we use
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the parameters r̃
AB

and r̃
BC

, with r̃
XY

denoting the projection of the bond-

distance vector r
XY

onto the a axis. The r̃
AB

and r̃
BC

values in Table 7 are

calculated from the expectation values 〈r〉, 〈R〉, 〈θ〉, and 〈ψ〉 obtained in

J = 0 calculations.

For the isoelectronic series of linear triatomic molecules, Table 7 reveals

that 〈r〉 > re actually holds for the vibrationally averaged bond lengths for

both r
AB

and r
BC

. We also see that r0(AB) < re(AB) and r0(BC) > re(BC),

where AB is the bond distance involving a light atom (H or D), placed farthest

away from the a axis in Fig. 4. The values of 〈r
AB
〉 are longer than r0(AB),

with differences ranging from 0.017 Å for DCO+ to 0.046 Å for HOC+. At

the same time, r̃
AB

and r0(AB) are closer to each other, deviating by at most

0.006 Å. We also observe that 〈r
HB
〉 and 〈r

DB
〉 differ by 0.005-0.006 Å, whereas

the difference between r̃
HB

and r̃
DB

is only 0.001-0.002 Å. The bond-distance

vector r
BC

between heavy atoms is tilted by the Euler angle ψ relative to the

a axis in Fig. 4. Since 〈ψ〉 = 2 9 6◦, 〈r
BC
〉 and r̃

BC
are similar, differing by at

most 0.006 Å for HOC+.

In view of Table 7, we may infer that r̃
AB

and r̃
BC

are good approximations

for the structural r0 parameters. This statement should, however, be viewed

only as a qualitative rationalization since vibrationally averaged quantities

are J-dependent [2]. This in itself is to be perceived as an inherent conceptual

problem for the definition of the r0 structure.

The difficulties in determining molecular structures from zero-

point rotational constants B0 are clearly visible in Fig. 3 (top): the

intersection points of the correlation lines there show a large spread

and a geometric structure common to different (actually all) iso-
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topologues is impossible to find. In the mass-dependence (rm)

method proposed by Watson [24], the equilibrium moment of iner-

tia is approximated with 2Is− I0, where Is is the moment of inertia

computed for the substituted rs geometry. This approach was, how-

ever, found unsatisfactory for hydrogen containing species [24].

7. Final remarks

Microwave rotational spectroscopy measures the energies of rotational

transitions, frequently with stunning precision. The experimental observa-

tions are fitted to effective spectroscopic Hamiltonians following the linear-

molecule or nonlinear-molecule formalism and the derived spectroscopic pa-

rameters are commonly applied to derive the molecular equilibrium structure.

Yet this task is far from straightforward. In real vibrating-rotating molecules,

corresponding to the actual experimental situation, the ground vibrational

state is described by a wavefunction, extended over other-than-equilibrium

arrangements. The effects of zero-point vibrational motion produce an effec-

tive rotational constant B0, which is different from the equilibrium Be value,

which is essential for the determination of the molecular structure. The ro-

tational constant B0 is not an observable, but a parameter arising within

the model used to describe the rotation. There is no obvious way to derive

∆B0 = Be −B0 experimentally.

In the present work, the methods commonly used to correct the exper-

imental rotational constant B0 for the vibration-rotation interaction effects

are examined by theoretical means for the case of the protonated nitro-

gen molecule, HN+
2 . The concepts of B0 and Be are both well founded in
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the Born-Oppenheimer picture, providing a clear definition for the full

vibration-rotation correction to B0, given simply by the difference ∆B0 =

Be − B0. Different potential energy representations (may) support different

minima, however. This issue is addressed here by employing two PESs for

HN+
2 , a global PES based on the CCSD(T)/cc-pVQZ approch [3] and a quar-

tic force field based on the ACTQ5+rel+ACPF approach [6]. Both PESs lead

to very similar ∆B0 estimates which therefore appears to be a rather robust

and useful quantity. It is reasonable to expect that similar conclu-

sions will be drawn also for other potential energy representations

[25] available for HN+
2 in the literature.

The rovibrational energies for eight isotopologues of HN+
2 and two ab

initio PESs are obtained in numerically exact full-dimensional rovibrational

calculations for rotational angular momentum J as high as 15 in both parities.

The computed energies are easily fitted to highly accurate low-order effective

spectroscopic Hamiltonians. This can be viewed as a hint towards regular

rovibrational behaviour, in agreement with conclusions from our wavefunc-

tion analysis.

The spectroscopic correction S0 of approximately 200 MHz for eight iso-

topic variants of HN+
2 is the dominant contribution to the full correction

∆B0. The higher-order corrections C0 = S0 −∆B0 amount to several MHz

and are thus much smaller than S0. Although small, the contribution C0 is

found to be essential for the determination of the molecular structure. This

is exemplified by Fig. 3, which graphically represents the solution for the

structural parameters common to eight isotopologues of HN+
2 obtained using

three different models for the estimates Best of the equilibrium rotational
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constants Be. Visibly the highest degree of consistency for the molecular

geometry is obtained by combining our variationally computed ∆B0 values

with accurate experimental data. It is also evident that the accuracy of the

geometry determination is not limited by the experimental accuracy but by

shortcomings in the theoretical model for the B0 → Be correction. The cor-

rections derived on the basis of low order perturbational formulas clearly do

not provide sufficient accuracy.

A similar representation for HCO+ is presented in Fig. 6. For both molec-

ular ions, that is, HN+
2 in Fig. 3 and HCO+ in Fig. 6, a situation of a well-

defined intersection point is approached for the case whenBest = Bexp
0 + ∆B0.

The model based on the spectroscopic correction S0 leads to less consistent

structural parameters, as verified by Table 6 for HN+
2 . The residual contribu-

tions C0 of the zero-point motion in Best = Bexp
0 + S0 are more pronounced

for the deuterium containing forms of both HN+
2 in Fig. 3 (middle) and HCO+

in Fig. 6 (top). We also found that a combined analysis of all data using a

nonlinear least squares procedure provides a more balanced solution and thus

more accurate structural parameters than pairwise approaches (like Kraich-

man’s equations). This conclusion fully corroborates our previous recom-

mendation [2].

In experimental studies, the spectroscopic correction S0 is obtained from

the effective rotational constants for the ground vibrational state and singly

excited vibrational ν1, ν2, and ν3 states, as seen by Eq. (4). Experimental

data for the fundamental vibrations are not always available also for (many)

different isotopic forms. To access information relevant for the higher-order

vibration-rotation contribution term C0 by experimental means, measure-
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Figure 6: Pairs of the bond distances r(HC) and r(CO) that reproduce Best
e modeled as

Bexp
0 + Sth

0 (top) and Bexp
0 + ∆Bth

0 (bottom) for eight isotopologues of HCO+.
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ments on vibrational overtones and combination bands are additionally re-

quired. But, this is not an easy task due to the increasing number of per-

turbations of the rovibrational structures which have to be identified and

accounted for.

In electronic-structure program packages, the spectroscopic correction S0

obtained by second-order vibrational perturbation theory [26] has become

a standard tool for the computation of the zero-point rotational constant

B0 from the calculated equilibrium rotational constant Be. As shown in

the present study for HN+
2 and previously for HCO+ and HOC+ [1, 2], this

correction appears to have its own fundamental deficiency due to the neglect

of higher-order effects. Electronic-structure (single-point) computations are

also employed to obtain other rotational parameters but only at equilibrium,

such as De and He. Their comparison with the actual experimental situation

must be handled with great care, otherwise the theory may be led to improper

conclusions, as demonstrated before for the case of C3H
+ [27].

In view of the preceding analysis, full-dimensional rovibrational calcula-

tions reemerge naturally as helpful. To gather the maximum amount of infor-

mation possible in such a calculation, it is essential to have a good functional

form for the potential, satisfying at least the fundamental symmetries [27].

Cyanocarbene, HCCN, for instance, is a radical with a bent equilibrium struc-

ture [∠(HCC)e=147 ◦, ∠(CCN)e=175◦ ], whose rovibrational energy pattern

is well modeled by the linear-molecule convention [28]. A quartic internal

coordinate force field for HCCN, covering only a narrow (near-equilibrium)

part of the configuration space, may then be a serious drawback for a proper

description of the dynamical behaviour of the angular degrees of freedom
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[27].

The proposed strategy for the computation of ∆B0 stands out as the most

consistent method to derive a re structure. It can be also applied to larger

molecules, since only vibrational ground state information for a sufficient set

of J values is required which is much easier to compute than a full spectrum.

Such a calculation requires only a moderate region of the PES which has to

be combined with an exact rovibrational kinetic energy operator to build

a full Hamiltonian which can then be treated by any numerically convenient

and accurate ground state method. The observed robustness of the com-

puted ∆B0 values for two different PESs suggests that the level of electronic

structure treatment does not have to be extremely high. This expectation

deserves computational verification. However, the total number of

isotopologues required in the reconstruction procedure for larger

molecules may be fairly high.

The equilibrium geometry and spectral behaviour are not always cor-

related in a simple fashion, as seen in the example of HCCN. This is also

manifested when determining the molecular structure from the spectral data.

A molecule is defined as linear when the potential energy minimum is at a

linear geometry. This definition is applied in traditional spectroscopy under

the assumption that the out-of-line motion is executed so that positive and

negative excursions from the line leave the molecule on average in a linear

configuration. This interpretation in essence neglects the rotational aspect in

the doubly degenerate bending mode. The vibrationally averaged structure

of linear molecules is bent even in the ground vibrational state [29]. In con-

nection with this, the present work also provides a qualitative rationalization
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of the so-called r0 structure, explained in terms of a structure projected onto

the principal a axis. This is shown by the example of the isoelectronic series

of linear triatomic molecules HCO+, HCN, HN+
2 , HNC, and HOC+.

Our approach for determining the equilibrium structure of the protonated

nitrogen molecule is self-consistent, and the issues under our control are de-

tailed down to the last instance. We solve it as a well-posed mathematical

problem with the help of least-squares techniques, which produce equilib-

rium bond lengths accurate to 1095-1096 Å as the least-squares solution. The

physical significance of such structural parameters should not be overinter-

preted, however. The most commonly used assumption in studies like the

present one is to use the Born-Oppenheimer approach in combination with

atomic masses (the electron masses attached to the nuclei under the point

mass assumption). It is easy to verify that the influence of one single electron

mass on the rotational constant is approximately 0.5 MHz. Rotational con-

stants known to five significant digits produce structural parameters known

also to five significant digits, that is, to 1095 Å, in accordance with Table 2

which shows that the uncertainty of re is linearly proportional to the uncer-

tainty of Be. In our previous study on HCO+ and HOC+, we found that

the replacement of the atomic masses with the nuclear masses affects the

structural parameters in order of 1094 Å, which is an effect much larger than

the accepted statistical uncertainties of 1095 Å found there for re [2]. This

is consistent with the electron to proton mass ratio of 5·1094. We also note

that the equilibrium structure obtained for HCO+ and HOC+ using atomic

masses is found to be statistically somewhat better than the nuclear-mass re-

sults [2]. Highly consistent methods for the derivation of re structures are a
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mandatory step on the way to identify effects beyond the Born-Oppenheimer

picture and our method appears to be valuable for this enterprise.

To bring experiment/experimental observations and theory even

closer, challenges ahead are associated with the manifestation of

non-Born-Oppenheimer effects in real molecules, which always re-

solve their own eigenvalue problem exactly. In rotational spectra,

this will bring in a small unknown mass-dependent contribution

∆Be to the experimentally observed B0, whose dominant part is

the Born-Oppenheimer Be value. This implies further that the

true equilibrium parameters will be isotopologue dependent and

distributed about the equilibrium Born-Oppenheiimer structure,

assuming that non-Born-Oppenheimer effects are such that the no-

tion of the potential energy surface will be sustained and the true

equilibrium structure will be defined by its minimum. For diatomic

molecules, there are models to incorporate the mass-dependent

nonadiabatic effects into ab initio potential energy curves by mor-

phing them separately for each of the isotopologues, like, for in-

stance, Ref. [30]. Further conceptual developments are, however,

required to address this issue for the case of triatomic molecules

from the theoretical and experimental viewpoints in order to prop-

erly include translational and rotational invariances of entire molec-

ular Hamiltonians.
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[8] M. Mladenović, Z. Bačić, Highly excited vibration-rotation states

of floppy triatomic molecules by a localized representation method:

The HCN/HNC molecule, J. Chem. Phys. 93 (1990) 3039–3053.

http://dx.doi.org/10.1063/1.458838.
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� Strategies to derive molecular equilibrium structures from experimental

data.

� α constants are insufficient to obtain accurate re structures from B0.

� Rovibrational variational calculations for HN+
2 for two potential energy

surfaces.

� Theoretical zero-point corrections are insensitive to ab initio level.




