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Abstract 
 

Baeyer-Villiger monooxygenases (BVMOs) catalyze the transformation of linear and cyclic 

ketones into their corresponding esters and lactones by introducing an oxygen atom into a 

CC bond. This bioreaction has numerous advantages compared to its chemical version; it 

does not induce the use of potentially harmful reagents (i.e., green chemistry) and displays 

significant better enantio- and regio- selectivity. 

New potential BVMOs were searched using sequence homology for type I BVMO 

proteins. 116 new sequences were identified as new putative BVMOs respecting the defined 

selection criteria. Multiple sequence alignments were carried out on the selected sequences to 

study the conservation of structurally and/or functionally important amino acids during 

evolution. Type I BVMO signature motif was found to be conserved in 94.8% of the 

sequences. We noticed also the highly conserved – but previously unnoticed – Threonine 167 

(93.1%), located in the signature motif; this position could be added in the pattern used to 

characterize specific Type I enzymes. Amino acids at the vicinity of the FAD and NADPH 

cofactors were found also to be highly conserved and the details of the interactions were 

emphasized. Interestingly, residues at the enzyme binding site were found less conserved in 

terms of sequence evolution, leading sometimes to some important amino acid changes. These 

behaviors could explain the enzyme selectivity and specificity for different ligands. 
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 1  Introduction 

Baeyer-Villiger (BV) oxidation is a useful synthetic tool in organic chemistry. It 

transforms linear and cyclic ketones into their corresponding esters or lactones by introducing 

an oxygen atom into a carbon-carbon bond [1]. This reaction can also be performed via 

biocatalysis by a family of enzymes called Baeyer-Villiger Monooxygenases (BVMOs) [2]. 

This bioreaction displayed better chemo-, regio- and enantio- selectivity than the chemical 

version; it also meets the demands of sustainable and green chemistry [3, 4]. 

BVMOs are flavoenzymes and belong to the class of oxidoreductases [2, 5]. They catalyze 

the oxidation of linear, cyclic and aromatic ketones to esters or lactones respectively. During 

enzymatic oxidation, one atom of oxygen is incorporated between a carbon-carbon bond, 

whereas the other oxygen atom ends up in a water molecule with the hydrogen atoms 

originating from the cofactor NAD(P)H. BVMOs are typically soluble proteins and work 

without additional proteins [6, 7]. 

BVMOs contain a flavin cofactor (FAD or FMN), which is crucial for catalysis and is 

tightly, but not covalently, bound in the active site. Furthermore, these enzymes require the 

reduction of the flavin cofactor to activate it for molecular oxygen binding. Either NADH or 

NADPH acts as the electron donor. In 1997, Willetts observed that at least two classes of 

BVMOs exist [8]. Type I BVMOs, which are the most intensively studied, consist of only one 

polypeptide chain and are FAD and NADPH-dependent for their activity. Type II BVMOs use 

FMN as flavin cofactor and NADH as electron donor and are composed of two different 

subunits. Most biochemical and biocatalytic studies [9] have been performed on the 

cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus NCIMB 9871 

(E.C. 1.14.13.22) [10] that belongs to type I BVMOs. This CHMO was shown to be active 
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against a remarkable number of substrates (over 100 different substrates) exhibiting an 

exquisite chemo-, enantio- and/or regio- selectivity [2, 11]. 

 

1.1. Enzymatic mechanism. 
 

The tightly bound FAD molecule is reduced by NADPH. The reduced flavin then reacts 

with molecular oxygen to form a C4A-peroxyflavin intermediate (E•FADHOO-•NADP+). 

This peroxyflavin intermediate plays the same role as the peracid in the conventional Baeyer-

Villiger oxidation in organic chemistry and will react with a ketone substrate. This produces 

the tetrahedral Criegee intermediate that subsequently rearranges to give the C4a-

hydroxyflavin and the lactone or ester products [6, 12]. A molecule of water is spontaneously 

eliminated from the hydroxyflavin to regenerate the oxidized FAD. Figure 1 presents a 

simplified scheme of the catalytic mechanism of Type I BVMOs. For a more detailed and 

elaborated scheme please see Mirza et al 2009 [13]. 

1.2. Structural features. 
 

The type I BVMOs consist of only one polypeptide chain. In 2004, Mattevi et al. solved 

the first crystal structure of a BVMO, PAMO (Phenylacetone monooxygenase) from 

Thermofibida fusca (PDB code 1W4X) [14]. Subsequently, the structure of CHMO from 

Rhodococcus sp. HI-31 was crystallized in complex with both FAD and NADPH by Mirza et 

al. in 2009 (PDB code 3GWD and 3GWF) [13]. The available structures revealed a two-

domain architecture and the active site is located in a cleft at the domain interface. They 

contain two Rossmann-folds [15] (with sequence motif GxGxxG which is frequently 

occurring in nucleotide binding proteins) indicating that these enzymes bind two cofactors 

using separate dinucleotide binding domains: one for the FAD and the other for NADPH 

cofactor [16]. Figure 2 presents the overall structure of CHMO enzyme (PDB code 3GWD) 
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[13] with both cofactors shown in sticks and transparent surface. The FAD cofactor is tightly 

bound and buried within the FAD domain (green), in agreement with the observation that this 

cofactor does not dissociate from the enzyme, while the NADPH is sandwiched between the 

Rossmann fold of the NADPH domain (blue). 

The main purpose of this work is the search for new potential BVMOs to expand the 

enzymatic toolbox for biocatalysis and cover a broader range of substrates types and enantio- 

and regio- selectivity. We will focus on the Type I BVMO subclass and will give an overview 

of the sequence, structure and/or function relationships. Amino acids conservation for the 

different type I BVMOs related sequences during evolution will be examined. Residues highly 

conserved and playing important roles for the structure and function of the enzyme will be 

highlighted. The details of the interactions between the enzymes and the different cofactors 

will be emphasized. 

 2  Materials and Methods 

The protocol used to look for BVMO type I related sequence is summarized in the Figure 

3. The sequences of three different type I BVMO enzymes were obtained from the Universal 

Protein Resource (UniProt) [17, 18] website (www.uniprot.org) and used as query: CHMO 

from Rhodococcus sp. HI-31 (UniProt ID: C0STX7), PAMO from T. fusca [19] (UniProt ID: 

Q47PU3) and cyclopentadecanone monooxygenase (CPDMO) from Pseudomonas sp. HI-70 

[20] (UniProt ID: Q1T7B5). They were chosen because their substrate profiles are different 

and together cover a large scope of compounds. Two of them have at least one crystal 

structure deposited in the Protein Data Bank (Figure 3.1). In a first step, PSI-BLAST (version 

2.2) [21] was used to look for related sequences in the UniRef90 database (March 2012 

release) [22] (Figure 3.2). The potential homologous proteins were selected using defined 

criteria of E-value and sequence identity with the corresponding query. Unrelated, incomplete 
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and redundant sequences from the different searches were removed from the final homologues 

pool before continuing to the next step (Figure 3.3). 

Multiple sequence alignments (MSA) were made with ClustalW2 (version 2.1) [23] and 

Muscle (version 3.8) [24] programs. Sequence alignments were visualized using the Jalview 

program (version 2.7) [25] (Figure 3.4). PhyML software (version 3.0) [26] was used to 

estimate maximum likelihood phylogenies from the protein sequence alignments (Figure 3.5). 

Tree representations of the phylogenic results were generated by Dendroscope software 

(version 3.2) [27]. The conservation score of each residue was calculated using Rate4Site 

(version 2.01) [28] (Figure 3.6) and the three-dimensional structure of the enzyme was 

colored according to the conservation scores using PyMOL (The PyMOL Molecular Graphics 

System, Version 1.5, Shrödinger, LLC) (Figure 3.7). 

 3  Results and Discussion 

 3.1  Search for BVMO related sequences in databases 

The UniProt reference clusters (UniRef) combine closely related sequences into a single 

record to reduce database size and speed up significantly sequence similarity searches. 

Various non-redundant databases with different sequence identity cut-offs exist. In this work, 

we used the Uniref90 database, in which no pair of sequences in the representative set has 

more than 90% mutual sequence identity respectively [29]. The protein sequence of three type 

I BVMOs, CHMO from Rhodococcus sp. HI-31 (UniProt ID: C0STX7; PDB code: 3GWD), 

PAMO from T. fusca [19] (UniProt ID: Q47PU3; PDB code: 1W4X) and cyclopentadecanone 

monooxygenase (CPDMO) from Pseudomonas sp. HI-70 [20] (UniProt ID: Q1T7B5) were 

used as query with the PSI-BLAST program. We performed three consecutive iterations of 

similarity searches. Redundant and unrelated sequences were removed from the set. The 

database search yielded 19, 71 and 34 proteins sequences respectively respecting the defined 
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criteria (E-value smaller than e-10 and sequence identity with the query higher than 50% to 

ensure related sequences). Eight sequences were as well removed from the set and were not 

taken into consideration in the analyses because they consist of fragments (incomplete) or 

their sequence lengths are too long (more than 850 residues). Finally, we obtained 116 

sequences between 500 and 653 residues long that will proceed to the multiple sequence 

alignments.  

 3.2  Multiple sequence alignments (MSA) 

To compare the sequences obtained from the PSI-BLAST search among each other and 

with their corresponding queries, pairwise and multiple sequence alignments were performed 

with ClustalW2 and MUSCLE program respectively. MUSCLE is known to accomplish faster 

and more accurate multiple sequence alignments than ClustalW2 however it does not perform 

pairwise alignments. The remaining analyses of conservation score calculation and phylogeny 

will be based on the multiple sequence alignments obtained by MUSCLE program and the 

average sequence identities will be calculated from the pairwise alignments obtained by 

ClustalW2. 

Conserved residues are usually involved in protein function or structural stability. 

Residues numbering will be based on the protein sequence of CHMO (540 amino acids long) 

from Rhodococcus sp. HI-31 to avoid any confusion while analyzing and presenting the 

results unless it is specified otherwise. MSA revealed several conserved residues that enabled 

us to identify possible important regions: dinucleotide-binding domains for FAD and 

NADPH. Both domains incorporate GXGXX(G/A) motifs, which are part of Rossmann fold 

[30, 31]. The first motif is located between residues 15 and 20 with Gly15, Gly17 found both 

to be conserved in 99.1% of the sequence while position 20 is represented by a Glycine in 

97.4% and 2.6% by an Alanine residue. The second motif, which belongs to the NADPH 
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domain, lies between residues 185 and 190. Position 185 and 187 are monopolized by 

Glycine, while position 190 is occupied in 62.1% and 35.3% of the cases by a Glycine and 

Alanine respectively. 

The fingerprint sequence of type I BVMOs subclass (FXGXXXHXXXW(P/D)) [32] is 

also preserved in our multiple sequence alignment. It is critically involved in the catalysis and 

hence contains several highly conserved amino acids. It is located between residue 160 and 

residue 171. Table 1 shows the percentage for the different amino acids composing this 

fingerprint in our dataset. Phe160 and His166 were found in 94.8% of the sequences while 

Gly162 and Trp170 are found in all sequences. Position 171 is occupied by a Pro and Asp in 

70.7% and 28.4% of the cases respectively. The sequences containing the exact full match of 

the fingerprint were also counted and the number is equal to 103 over the total of 116 

sequences in the dataset. This result shows that the latter is composed of 88.8% type I 

BVMOs enzymes. Concerning the 13 sequences, only a single residue at the pattern was 

changed at a time. In six cases, it involves the first residue of the motif (Phenylalanine) that 

was replaced by another aromatic amino acid (Tyrosine). We also noticed that position 167, 

which is located inside that highly conserved type I BVMO motif, is a Threonine amino acid 

in 93.1% of the sequences. Therefore, it is possible to propose a modified type I BVMO 

signature that includes Thr167: FXGXXXHTXXW(P/D). The exact match of the latter motif 

was found in 82.8% of the sequences (96 over 116). Very recently, Riebel et al. reported in 

2012 the presence of a remarkably conserved region located between the N-terminal 

Rossmann motif and the BVMO motif. This region can be defined by 

[A/G]GxWxxxx[F/Y]P[G/M]xxxD [33]. The exact match of this pattern was found in 115 

sequences in our dataset and is located between position 45 and position 59 for Rhodococcus 

CHMO  
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 3.3  Phylogenetic tree construction 

Figure 4 shows the relationship between the sequences as circular cladogram presentation 

of the maximum likelihood tree generated by PhyML from the multiple sequence alignment 

obtained by MUSCLE. Three major branches, shown in different colors, can be distinguished; 

they represent 23.3% for the red cluster that encompasses the CHMO and 29.3% and 47.4% 

for the green and blue clusters that enclose PAMO and CPDMO respectively. They can be 

subdivided into clusters of various sizes. 

The average pairwise sequence identity of all sequences in our dataset is equal to 40%. It 

ranges between 49.5% and 54.4% for each cluster underlining some diversity within clusters. 

Average and range of sequence identity between these different sequence families were also 

calculated and the results are summarized in Sup. Table 1. Hence, the sequences in the blue 

branch are evolutionarily more distant from the red and green branches as they share an 

average sequence identity of 26.4% and 27.4% respectively. The red and green branches share 

an average sequence identity equal to 44.1%. The radial phylogram located on the top right of 

Figure 4 also underlines this. 

 3.4  Conservation score calculation during evolution 

Rate4Site is an algorithmic tool for the identification of functionally important regions in 

proteins by estimating the rate of amino acid substitutions at each position in a MSA, taking 

into account the evolutionary relations between the homologous proteins, using the maximum 

likelihood paradigm. Rate4Site uses the MSA previously generated by MUSCLE and the tree 

obtained from PhyML to detect these important sites. This research is based on the underlying 

assumptions that, in general, structurally and functionally important residues are slowly 

evolving. Functionally important residues, e.g. in ligand binding and protein-protein 

interactions, are often evolutionarily conserved and are most likely to be solvent-accessible, 



 

11/29 

whereas conserved residues within the protein core most probably have an important 

structural role in maintaining the protein’s fold [34, 35]. Thus, estimated evolutionary rates, as 

well as relative solvent accessibility predictions, are assigned to each amino acid in the 

sequence; both are subsequently used to indicate residues that have potential structural or 

functional importance. 

From the multiple sequence alignment obtained by MUSCLE, we computed the residue 

variety in % for each position of Rhodococcus CHMO sequence. Similarities between amino 

acids were also taken into consideration in the analyses. Twenty two positions (4.1%) were 

found entirely conserved for all the sequences in the dataset, while 47 (8.7%) and 35 (6.5%) 

of the positions were occupied in 90% to 100% and 80% to 90% of the cases by the same 

residue respectively. Over 100 positions of 540 have been found preserved in at least 80% of 

the sequences underlying that Type I BVMO are a highly conserved family of enzymes. Table 

1 summarizes important positions in the type I BVMOs family and the corresponding nature 

and percentage of residues. The positions that are conserved in more than 70% of the 

sequences correspond to 21.1% of the residues (see Sup. Table 2). 

To elucidate the importance of these conserved residues for the enzyme function and 

structure, conservation scores will be analyzed on the 3D structure of the enzyme and the 

existing interactions with both cofactors will be highlighted. 

 3.5  Projection of the scores on the protein three-dimensional structure 

Figure 5 displays Rhodococcus CHMO (PDB code 3GWD) structure presented in surface 

in two different views. The protein was colored according to the conservation score of each 

residue. The scores are normalized, so that the average score for all residues is zero and the 

standard deviation is one. The lowest score represents the most conserved position in the 

protein. The color varies from red for highly conserved residues (normalized conservation 
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score equal to -1.2) to blue for poorly conserved residues (normalized conservation score 

equal to 4.0). Moderately conserved residues are colored in white. This presentation will give 

a better global overview taking into consideration the three-dimensional fold of the protein in 

the space. For example, the FAD-binding domain of CHMO [13] is composed of residues 1 to 

140 and 387 to 540 (green domain in Figure 2), while the NADPH domain is composed of 

residues 152 to 208 and 335 to 380 (blue domain in Figure 2). In addition, domain detection 

algorithms were applied on Rhodococcus CHMO and also Thermofibida PAMO structures 

using Protein Peeling [36-38] and DIAL [39] webservers. These two enzymes have a Root 

Mean Square Deviation (RMSD) of 1.4 Å and the obtained results from both approaches 

showed that Type I BVMO proteins present a similar topology and an organization in two 

sequentially un-consecutive domains (data from Protein Peeling and DIAL not shown). 

Therefore, these two domains are not consecutive in the 1D linear amino acid sequence of the 

enzyme, and only a projection of the scores on the 3D structure will allow visualizing the 

conserved patches. We can observed that the outer parts of the protein (colored in blue and 

light blue on the Figure 5) are less conserved than the inner parts which mainly correspond to 

the FAD and NADPH binding domain as well as the active site that is found in a cleft at the 

interface of the previous domains. The helical domain (residues 224 to 322 and colored in 

cyan in Figure 2) does not seem to be highly conserved in the type I BVMO subclass; only 

few positions were found to be conserved for more than 75% of the sequences. We noticed 

also that NADPH domain is slightly less conserved than FAD domain. 

Figure 6 presents a magnified view of the enzyme active site and cofactor binding 

domains. This view underlines that all residues interacting with the cofactors are conserved 

(red color on the figure). The identification and measurements of pockets and cavities in 

CHMO protein were made with CASTp [40] server. The largest cavity found has a molecular 
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surface equal to 2306 Å2 and a volume of 3217 Å3. This cavity includes the binding domains 

of both cofactors which show that they must communicate with each other for the enzymatic 

activity. 

 3.6  Highlighting existing interactions 

More analyses on an atomistic level were also made to reveal the structural and/or 

functional role of the conserved residues. PoseView [41, 42] webserver was used on the X-ray 

structure of CHMO to determine the existing interactions between the enzyme and both 

cofactors (Figure 7). Important positions and their corresponding residue type and percentages 

are already summarized in Table 1. 

Atom labeling of both cofactors FAD and NADPH is shown in Sup. Figure 1. Reference 

will be made throughout the coming paragraphs to ease the explanation of the interactions 

between the enzyme residues and specific atoms of the cofactors. Amino acid at position 19 

can be mainly a Glycine or Alanine. This residue makes hydrogen bonds by its backbone 

amino group with one oxygen atom of the first phosphate group (labeled O2P) of FAD 

cofactor. Side chain of residues at this position must be small to avoid steric hindrance with 

FAD. Position 39 is occupied by an Aspartic and Glutamic acid in 20% and 80% respectively. 

The carboxylic group COO- of these negatively charged amino acids performs hydrogen 

bonds with both hydroxyl groups carried by the ribose ring of FAD (O2B and O3B). 

The site 47 is filled in 91.3% of the data by a Threonine that creates hydrogen bonds by its 

backbone amino group with an oxygen of PA phosphate group. An extra interaction can be 

made through its hydroxyl group side chain with O2' of FAD cofactor. Hydrophobic contacts 

between this residue and the cofactor are represented more indirectly by means of green 

contours. More hydrophobic contacts are conducted by Trp48 that is conserved in 100.0% of 

the sequences. 
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A Tryptophan residue fills the position 50 in 80.9% of the sequences. As for the Asp39, 

Trp50 shares through the amino group of its indole ring two hydrogen bonds with both 

hydroxyl functions of the FAD ribose ring. Otherway it is substituted by other aromatic 

residues, namely Phenylaline, Tyrosine and Histidine. Position 59 was found to be highly 

conserved and presented by an Aspartic acid in all the sequences. It makes hydrogen bond 

through its backbone NH group with the O4 ketone of isoalloxazine ring. The other ketone of 

the latter ring is engaged in hydrogen bonding with two different residues: Asn436 highly 

conserved (98.3%) through its side chain amino group and residue at position 437 that is 

completely variable because this hydrogen bond is made through its backbone amino group. 

Position 436 was found also to be occupied in 0.9% of the cases by a Glutamine residue 

which has similar side chain than Asparagine. 

Residue 65 is presented in 100% of the cases by a Tyrosine amino acid. The hydroxyl 

group of its side chain plays the role of hydrogen donor and acceptor and interacts with the 

hydroxyl groups O3' and O4' of FAD cofactor. Residue at position 112 was found to be 

occupied by 82.8% of the cases by a Valine and for the remaining sequences by mainly other 

amino acids with hydrophobic side chains (Alanine, Isoleucine and Methionine). It makes two 

hydrogen bonds through its backbone with the adenine base of FAD cofactor. The CO and NH 

groups play the role of acceptor and donor and interact with N6A and N1A atoms respectively. 

We analyzed next the residues of the enzyme interacting with the NADPH cofactor. 

Position 189 can be a Threonine (as in CHMO) or a Serine with the respective percentage of 

50.9% and 49.1%. This residue makes a hydrogen bond, through the hydroxyl group of its 

side chain that acts as a donor, with the PN phosphate group of the NADPH cofactor. One 

extra hydrogen bond can be made by the amine group of its backbone. Same for position 186 

that is occupied in 94.8% of the sequences by a Threonine that acts, through its NH group, as 
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a hydrogen donor to O3B atom. This position can be also occupied by residues that possess 

hydrogen bond donor groups (Serine and Asparagine) 

The Arg209 is found to be conserved during evolution in more than 100% of the 

sequences. The analyses of the existing interactions between the protein and the cofactors 

showed that Arg209 side chain establishes π-cation interaction with the NADPH adenine base 

as well as electrostatic interactions with the phosphate group of the nucleotide. Position 210 is 

occupied in 81.9% and 15.5% of the sequences by a Threonine or a Serine respectively. Both 

amino acids can make hydrogen bond, through their side chain hydroxyl group, with the 

phosphate (P2B) carried by the ribose ring. Position 492 is occupied by an aromatic amino 

acid with the possibility of hydrogen bonding by its side chain with the O3D atom of 

NADPH, i.e. 69.8% of Tryptophane and 28.4% of Tyrosine.  

Mirza and co-workers reported the X-ray structure of a Rhodococcus CHMO showing an 

open and a closed form [13]. These conformations revealed domain shifts around multiple 

linkers and loop movements involving the conserved Arg329 and Trp492. These movements 

are suggested to be coordinated by the previously mentioned BVMO motif, providing an 

explanation for the conservation of this sequence motif. Previously, the X-ray structure 

analysis of PAMO (in the absence of NADP+), reported in 2004 by Malito and co-workers, 

suggested that Arg337 stabilizes the Criegee intermediate by H-bonding [14]. 

Comparisons of FAD binding site of Rhodococcus CHMO and T. fusca PAMO show 

interesting specificities (see Figure 8). Table 3 lists the corresponding residues in both 

enzymes. We can observe that both enzyme present similar FAD-binding domain shape and 

volume. From a total of 15 positions, 9 were found to be the same (60%) in both enzymes. 

From the residues that differ, some of them are similar and their side chains present the same 

physico-chemical properties like Asp39 in CHMO that was replaced by Glu46 in PAMO and 
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therefore they make similar interactions with the FAD cofactor. While for others, the 

interactions with the cofactor are done primarily through the backbone. Leu437 and Gly19 in 

CHMO were changed to Met446 and Ser27 respectively in PAMO. Both residues make 

hydrogen bonding with the FAD cofactor via the amino group of their backbone. And last; the 

small diversity in the amino acid composition must play an important role in the specificity 

and selectivity for substrates. 

4. Summary and Conclusion 

In this work, we looked for related sequences in the UniRef90 database with PSI-BLAST 

using three well defined type I BVMOs protein sequences query. More than 100 new 

sequences were identified as putative BVMOs respecting our defined criteria of an E-value 

smaller than e-10 and a sequence identity with the query higher than 50%. These strict 

selection criteria were chosen as the flavopotein monooxygenase superfamily is suffering 

from many annotation problems in the databases. Some proteins were cloned and sequenced, 

but their activities have not been properly tested. Therefore, their submitted names remain 

vague and unspecific (i.e. putative monooxygenase, oxidoreductase). While others enzymes 

were intensively studied and their corresponding names reveal valuable information on their 

activities and the substrate they catalyze (i.e. steroid monooxygenase, phenylacetone 

monooxygenase, cyclohexanone 1,2-monooxygenase).  

Multiple sequence alignments were carried out on the selected sequences to study the 

conservation of structurally and/or functionally important amino acids during evolution. Type 

I BVMO signature motif was found to be conserved in 94.8% of the sequences. We noticed 

also the highly conserved Thr167 (93.1%) that is located in the signature motif, and therefore 

we suggested that the addition of this position in the pattern can be used to distinguish specific 

Type I enzymes. Both Rossmann Fold motifs were found to be highly conserved as well as 
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amino acids at the vicinity of the FAD and NADPH cofactors. Residues at the enzyme binding 

site were less conserved than the previous ones which can explain the enzyme selectivity and 

specificity for different ligands. 

As a conclusion, the identification of new putative BVMOs and the amino acids 

conservation scores during evolution study combined with structural information will offer 

very valuable insights for enzyme design and will obviously facilitate the production of novel 

biocatalysts. It must be noted that all these analyses were made on static structures of the 

different enzymes. Some residues were found to be highly conserved but not directly involved 

in the interaction with the cofactors. Treating the structure as flexible using molecular 

dynamics simulations will reveal the exact functional and/or structural role of these residues 

as well as the dynamic movement of one domain relative to another and the different reaction 

lifetime. in silico structural models, obtained by comparative modeling and threading 

techniques, can also be considered for the sequences that do not have experimental structures 

yet. 
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Figures 

 

Figure 1: Simplified scheme of the catalytic mechanism of type I BVMOs. 
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Figure 2: Structure of CHMO (PDB id 3GWD) [13]. FAD domain (residues 1 to 140 and 387 

to 540) in green; NADPH domain (residue 152 to 208 and 335 to 380) in blue; helical domain 

(residues 224 to 322) in cyan. Linkers and mobile loops are shown in silver. BVMO signature 

motif is colored in red (residues 160 to 171). The visualization was done with PyMol 

software. 
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Figure 3: Flowchart resuming the global protocol used to look for BVMO similar sequences 

and to estimate the conservation score of residues during evolution. (1) from a limited set of 

annoted sequences, (2) a supervised dataset of related proteins was found using PSI-BLAST. 

(3) Only certain related sequences were selected. (4) They were aligned and (5) phylogeny 

was performed using maximum likelihood method. (6) conservation score for each position of 

the sequence was calculated and (7) analyzed on available protein structure. 
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Figure 4: Circular cladogram presentation of the tree generated by PhyML [22] from the 

multiple sequence alignment obtained by MUSCLE [20]. Small radial phylogram is drawn on 

the top right to highlight evolutive distances between branches. The three initial sequences 

(CHMO, PAMO and CPDMO) are indicated and are enclosed in the red, green and blue 

clusters respectively. 
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Figure 5: Amino acid conservation score seen on the protein structure of CHMO protein 

(PDB code 3GWD) [13] presented in surface (left) and another view after rotation along the Y 

axis (right). Red and blue colors correspond to high and low conserved residues respectively. 

Visualization done with PyMol software and the conservation score range is shown at the 

bottom of the figure. 
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Figure 6: Analysis of FAD and NADPH cofactor domains. The protein surface of CHMO 

(PDB code 3GWD) is colored in term of sequence conservation while cofactors are shown in 

ball and stick representation and the carbon atoms of FAD and NADPH are colored in green 

and white respectively. Visualization done with PyMol software and the same conservation 

score color range was used as in Figure 5. 
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Figure 7: 2D representation of the interactions between CHMO (PDB code 3GWD) [13] and 

FAD (left) and NADPH(right) cofactors. Picture was generated by PoseViewWeb 1.97.0 [39, 

40]. 
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Figure 8: Binding site comparison between CHMO from Rhodococcus sp. HI-31 (PDB code: 

3GWD - left) [13] and PAMO from Thermofibidafusca (PDB code 1W4X - right) [14]. FAD 

cofactor was shown in large stick presentation in green and cyan respectively. Side chains 

around cofactor are labeled. Colored spheres were positioned of the Cα atom depending on 

the residue type: Hydrophobic in gray; aromatic in pink; polar in light blue; positive in blue; 

negative in red and cysteine in yellow. Visualization done with PyMol software. 

 

 



 

 

 

Table 1: Summary of the most conserved residues with their position in regards to CHMO protein from Rhodococcus sp. HI-31, with their percentage of 

conservation  for the different motifs of great interests: Rossmann fold motifs (yellow), Type I BVMO signature motif (red) and at the FAD (green) and 

NADPH (blue) binding sites. 

Rossmann Fold motif Signature fingerprint sequence FAD-binding domain NADPH-binding domain 

Residue (%) Residue (%) Residue (%) Residue (%) 

G 15 99.1 F 160 94.8 G/A/S 19 47.0 / 42.6 / 9.6 P 152 96.6 

G 17 99.1 G 162 100.0 D/E 39 20.0 / 80.0 I 184 94.0 

G/A 20 97.4 / 2.6 H 166 94.8 G 45 99.1 T 186 94.8% 

G 185 100.0 T 167 93.1 G 46 100.0 T/S 189 50.9 / 49.1 

G 187 100.0 W 170 100.0 T 47 91.3 R 209 100.0 

G/A 190 62.1 / 35.3 P/D 171 70.7 / 28.4 W 48 100.0 T/S 210 81.9 / 15.5 

    W/F/Y 50 80.9 / 11.3 / 4.3 R 329 100.0 

    N 51 100.0 A 379 96.6 

    Y 53 97.4 G 381 100.0 

    D 59 100.0 W/Y 492 69.8 / 28.4 

    Y 65 100.0   

    V 112 82.8   

    N 436 98.3   
 
 



 

 

Table 2: Listing of the residues at the FAD domain of CHMO and their equivalent in PAMO. 

CHMO PAMO 

R329 R337 

N436 N445 

D59 D66 

L437 M446 

S58 CYS65 

F18 F26 

G15 G23 

G17 G25 

G19 S27 

G144 G151 

T47 V54 

G46 G53 

V143 S150 

D39 E46 

V112 V119 

 


