Unsupervised Named Entity Recognition and Disambiguation: An Application to Old French Journals - HAL Accéder directement au contenu
Communication dans un congrès Année : 2014

Unsupervised Named Entity Recognition and Disambiguation: An Application to Old French Journals

Résumé

In this paper we introduce our method of Unsupervised Named Entity Recognition and Disambiguation (UNERD) that we test on a recently digitized unlabeled corpus of French journals comprising 260 issues from the 19th century. Our study focuses on detecting person, location, and organization names in text. Our original method uses a French entity knowledge base along with a statistical contextual disambiguation approach. We show that our method outperforms supervised approaches when trained on small amounts of annotated data, since manual data annotation is very expensive and time consuming, especially in foreign languages and specific domains.
Loading...
Fichier non déposé

Dates et versions

hal-01082963, version 1 (14-11-2014)

Identifiants

Citer

Yusra Mosallam, Alaa Abi Haidar, Jean-Gabriel Ganascia. Unsupervised Named Entity Recognition and Disambiguation: An Application to Old French Journals. ICDM 2014 - 14th Industrial Conference on Data Mining, Jul 2014, St. Petersburg, Russia. pp.12-23, ⟨10.1007/978-3-319-08976-8_2⟩. ⟨hal-01082963⟩
339 Consultations
0 Téléchargements
Dernière date de mise à jour le 03/11/2024
comment ces indicateurs sont-ils produits

Altmetric

Partager

Gmail Facebook Twitter LinkedIn Plus