A Reduced Order representation of the Poincaré-Steklov operator: an application to coupled multi-physics problems - HAL Accéder directement au contenu
Article dans une revue International Journal for Numerical Methods in Engineering Année : 2017

A Reduced Order representation of the Poincaré-Steklov operator: an application to coupled multi-physics problems

Résumé

This work investigates a model reduction method applied to coupled multi-physics systems. The case in which a system of interest interacts with an external system is considered. An approximation of the \PoinSte operator is computed by simulating, in an offline phase, the external problem when the inputs are the Laplace-Beltrami eigenfunctions defined at the interface. In the online phase, only the reduced representation of the operator is needed to account for the influence of the external problem on the main system. An online basis enrichment is proposed in order to guarantee a precise reduced-order computation. Several test-cases are proposed on different fluid-structure couplings.
Fichier principal
Vignette du fichier
manuscript.pdf ( 1.25 Mo ) Télécharger
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01396286, version 1 (14-11-2016)

Identifiants

  • HAL Id : hal-01396286 , version 1

Citer

Matteo Aletti, Damiano Lombardi. A Reduced Order representation of the Poincaré-Steklov operator: an application to coupled multi-physics problems. International Journal for Numerical Methods in Engineering, 2017. ⟨hal-01396286⟩
420 Consultations
222 Téléchargements
Dernière date de mise à jour le 29/12/2024
comment ces indicateurs sont-ils produits

Partager

Gmail Facebook Twitter LinkedIn Plus