Toward an Early Warning System for Health Issues Related to Particulate Matter Exposure in Brazil: The Feasibility of Using Global PM 2.5 Concentration Forecast Products
Emmanuel Roux
(1, 2, 3)
,
Eliane Ignotti
(4)
,
Nelson Bègue
(5)
,
Hassan Bencherif
(5)
,
Thibault Catry
(1, 2)
,
Nadine Dessay
(1, 2)
,
Renata Gracie
(2, 3)
,
Helen Gurgel
(2, 6)
,
Sandra de Sousa Hacon
(7)
,
Mônica de A. F. M. Magalhães
(2, 3)
,
Antônio Miguel Vieira Monteiro
(8)
,
Christophe Révillion
(1)
,
Daniel Antunes Maciel Villela
(9)
,
Diego Xavier
(2, 3)
,
Christovam Barcellos
(2, 3)
1
UMR 228 Espace-Dev, Espace pour le développement
2 LMI Sentinela [Rio de Janeiro]
3 LIS - Laboratório de Informação em Saúde [Rio de Janeiro]
4 UNEMAT - Universidade do Estado de Mato Grosso
5 LACy - Laboratoire de l'Atmosphère et des Cyclones
6 LAGAS - Laboratório de Geografia, Ambiente e Saúde
7 ENSP - Escola Nacional de Saude Publica Sergio Arouca / Sergio Arouca National School of Public Health [Rio de Janeiro]
8 INPE - Instituto Nacional de Pesquisas Espaciais
9 PROCC - Program for Scientific Computing / Programa de Computação Científica [Rio de Janeiro]
2 LMI Sentinela [Rio de Janeiro]
3 LIS - Laboratório de Informação em Saúde [Rio de Janeiro]
4 UNEMAT - Universidade do Estado de Mato Grosso
5 LACy - Laboratoire de l'Atmosphère et des Cyclones
6 LAGAS - Laboratório de Geografia, Ambiente e Saúde
7 ENSP - Escola Nacional de Saude Publica Sergio Arouca / Sergio Arouca National School of Public Health [Rio de Janeiro]
8 INPE - Instituto Nacional de Pesquisas Espaciais
9 PROCC - Program for Scientific Computing / Programa de Computação Científica [Rio de Janeiro]
Emmanuel Roux
- Fonction : Auteur
- PersonId : 9474
- IdHAL : emmanuel-roux-ird
- ORCID : 0000-0003-2266-8207
- IdRef : 069144753
Nelson Bègue
- Fonction : Auteur
- PersonId : 1239105
- ORCID : 0000-0003-0720-9205
Hassan Bencherif
- Fonction : Auteur
- PersonId : 173939
- IdHAL : hassan-bencherif
- ORCID : 0000-0003-1815-0667
- IdRef : 128778776
Thibault Catry
- Fonction : Auteur
- PersonId : 16197
- IdHAL : thibault-catry
- ORCID : 0000-0001-9514-1751
- IdRef : 161122922
Nadine Dessay
- Fonction : Auteur
- PersonId : 15858
- IdHAL : nadine-dessay
- ORCID : 0000-0003-0526-3531
- IdRef : 103891099
Renata Gracie
- Fonction : Auteur
- PersonId : 1085756
Helen Gurgel
- Fonction : Auteur
- PersonId : 1085757
Mônica de A. F. M. Magalhães
- Fonction : Auteur
- PersonId : 1085758
Antônio Miguel Vieira Monteiro
- Fonction : Auteur
- PersonId : 1085759
Christophe Révillion
- Fonction : Auteur
- PersonId : 11165
- IdHAL : christophe-revillion
- ORCID : 0000-0002-3896-2083
- IdRef : 142537659
Christovam Barcellos
- Fonction : Auteur
- PersonId : 1077300
Résumé
PM2.5 severely affects human health. Remotely sensed (RS) data can be used to estimate PM2.5 concentrations and population exposure, and therefore to explain acute respiratory disorders. However, available global PM2.5 concentration forecast products derived from models assimilating RS data have not yet been exploited to generate early alerts for respiratory problems in Brazil. We investigated the feasibility of building such an early warning system. For this, PM2.5 concentrations on a 4-day horizon forecast were provided by the Copernicus Atmosphere Monitoring Service (CAMS) and compared with the number of severe acute respiratory disease (SARD) cases. Confounding effects of the meteorological conditions were considered by selecting the best linear regression models in terms of Akaike Information Criterion (AIC), with meteorological features and their two-way interactions as explanatory variables and PM2.5 concentrations and SARD cases, taken separately, as response variables. Pearson and Spearman correlation coefficients were then computed between the residuals of the models for PM2.5 concentration and SARD cases. The results show a clear tendency to positive correlations between PM2.5 and SARD in all regions of Brazil but the South one, with Spearman’s correlation coefficient reaching 0.52 (p < 0.01). Positive significant correlations were also found in the South region by previously correcting the effects of viral infections on the SARD case dynamics. The possibility of using CAMS global PM2.5 concentration forecast products to build an early warning system for pollution-related effects on human health in Brazil was therefore established. Further investigations should be performed to determine alert threshold(s) and possibly build combined risk indicators involving other risk factors for human respiratory diseases. This is of particular interest in Brazil, where the COVID-19 pandemic and biomass burning are occurring concomitantly, to help minimize the effects of PM emissions and implement mitigation actions within populations.
Domaines
Océan, AtmosphèreFormat du dépôt | Fichier |
---|---|
Type de dépôt | Article dans une revue |
Titre |
en
Toward an Early Warning System for Health Issues Related to Particulate Matter Exposure in Brazil: The Feasibility of Using Global PM 2.5 Concentration Forecast Products
|
Résumé |
en
PM2.5 severely affects human health. Remotely sensed (RS) data can be used to estimate PM2.5 concentrations and population exposure, and therefore to explain acute respiratory disorders. However, available global PM2.5 concentration forecast products derived from models assimilating RS data have not yet been exploited to generate early alerts for respiratory problems in Brazil. We investigated the feasibility of building such an early warning system. For this, PM2.5 concentrations on a 4-day horizon forecast were provided by the Copernicus Atmosphere Monitoring Service (CAMS) and compared with the number of severe acute respiratory disease (SARD) cases. Confounding effects of the meteorological conditions were considered by selecting the best linear regression models in terms of Akaike Information Criterion (AIC), with meteorological features and their two-way interactions as explanatory variables and PM2.5 concentrations and SARD cases, taken separately, as response variables. Pearson and Spearman correlation coefficients were then computed between the residuals of the models for PM2.5 concentration and SARD cases. The results show a clear tendency to positive correlations between PM2.5 and SARD in all regions of Brazil but the South one, with Spearman’s correlation coefficient reaching 0.52 (p < 0.01). Positive significant correlations were also found in the South region by previously correcting the effects of viral infections on the SARD case dynamics. The possibility of using CAMS global PM2.5 concentration forecast products to build an early warning system for pollution-related effects on human health in Brazil was therefore established. Further investigations should be performed to determine alert threshold(s) and possibly build combined risk indicators involving other risk factors for human respiratory diseases. This is of particular interest in Brazil, where the COVID-19 pandemic and biomass burning are occurring concomitantly, to help minimize the effects of PM emissions and implement mitigation actions within populations.
|
Auteur(s) |
Emmanuel Roux
1, 2, 3
, Eliane Ignotti
4
, Nelson Bègue
5
, Hassan Bencherif
5
, Thibault Catry
1, 2
, Nadine Dessay
1, 2
, Renata Gracie
2, 3
, Helen Gurgel
2, 6
, Sandra de Sousa Hacon
7
, Mônica de A. F. M. Magalhães
2, 3
, Antônio Miguel Vieira Monteiro
8
, Christophe Révillion
1
, Daniel Antunes Maciel Villela
9
, Diego Xavier
2, 3
, Christovam Barcellos
2, 3
1
UMR 228 Espace-Dev, Espace pour le développement
( 196623 )
- IRD - Maison de la Télédétection - 500 rue Jean-François Breton - 34093 Montpellier
- France
2
LMI Sentinela [Rio de Janeiro]
( 1006527 )
- Rio de Janeiro
- Brésil
3
LIS -
Laboratório de Informação em Saúde [Rio de Janeiro]
( 1054006 )
- Avenida Brasil 4.365 - Manguinhos, Rio de Janeiro, RJ
- Brésil
4
UNEMAT -
Universidade do Estado de Mato Grosso
( 434241 )
- Av. Tancredo Neves, 1095 - Cavalhada II - 78200-000 - Cáceres - Mato Grosso
- Brésil
5
LACy -
Laboratoire de l'Atmosphère et des Cyclones
( 70806 )
- Faculté des Sciences et techniques - Université de La Réunion 15 avenue René Cassin CS92003 97744 SAINT DENIS CEDEX 9
- France
6
LAGAS -
Laboratório de Geografia, Ambiente e Saúde
( 575899 )
- Brésil
7
ENSP -
Escola Nacional de Saude Publica Sergio Arouca / Sergio Arouca National School of Public Health [Rio de Janeiro]
( 569578 )
- Rua Leopoldo Bulhões, 1480 - Manguinhos, Rio de Janeiro
- Brésil
8
INPE -
Instituto Nacional de Pesquisas Espaciais
( 106631 )
- Av. dos Astronautas, 1758 Jd Granja, CEP : 12227-010 São José dos Campos - SP
- Brésil
9
PROCC -
Program for Scientific Computing / Programa de Computação Científica [Rio de Janeiro]
( 242947 )
- Avenida Brasil 4.365 - Manguinhos, Rio de Janeiro, RJ
- Brésil
|
Licence |
Paternité
|
Langue du document |
Anglais
|
Nom de la revue |
|
Vulgarisation |
Non
|
Comité de lecture |
Oui
|
Audience |
Internationale
|
Date de publication |
2020-12-12
|
Titre de la collection |
Remote Sensing for Health: from Fine-Scale Investigations towards Early-Warning Systems
|
Volume |
12
|
Numéro |
24
|
Page/Identifiant |
4074
|
Domaine(s) |
|
Financement |
|
Mots-clés |
en
particulate matter forecasts, severe acute respiratory diseases, Brazil, early warning system, remotely sensed observation assimilation
|
DOI | 10.3390/rs12244074 |
Base Horizon | fdi:010080523 |
Origine :
Fichiers produits par l'(les) auteur(s)
Loading...