Learning Model Transformation Patterns using Graph Generalization - HAL Accéder directement au contenu
Communication dans un congrès Année : 2014

Learning Model Transformation Patterns using Graph Generalization

Résumé

In Model Driven Engineering (MDE), a Model Transforma-tion is a specialized program, often composed of a set of rules to transform models. The Model Transformation By Example (MTBE) approach aims to assist the developer by learning model transformations from source and target model examples.In a previous work, we proposed an approach which takes as input a fragmented source model and a target model, and produces a set of fragment pairs that presents the many-to-many match-ing links between the two models. In this paper, we propose to mine model transformation patterns (that can be later transformed in trans-formation rules) from the obtained matching links. We encode our models into labeled graphs that are then classified using the GRAAL approach to get meaningful common subgraphs. New transformation patterns are then found from the classification of the matching links based on their graph ends. We evaluate the feasibility of our approach on two represen-tative small transformation examples.
Fichier principal
Vignette du fichier
cla2014_submission_1.pdf ( 371.38 Ko ) Télécharger
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01075523, version 1 (17-10-2014)

Identifiants

  • HAL Id : hal-01075523 , version 1

Citer

Hajer Saada, Marianne Huchard, Michel Liquière, Clémentine Nebut. Learning Model Transformation Patterns using Graph Generalization. CLA 2014 - 11th International Conference on Concept Lattices and Their Application, Institute of Computer Science, Pavol Jozef Šafárik University in Košice, Ondrej Krídlo, Oct 2014, Košice, Slovakia. pp.11-22. ⟨hal-01075523⟩
317 Consultations
103 Téléchargements
Dernière date de mise à jour le 29/12/2024
comment ces indicateurs sont-ils produits

Partager

Gmail Facebook Twitter LinkedIn Plus