Regularization in Keller-Segel type systems and the De Giorgi method - HAL Accéder directement au contenu
Article dans une revue Communications in Mathematical Sciences Année : 2012

Regularization in Keller-Segel type systems and the De Giorgi method

Résumé

Fokker-Planck systems modeling chemotaxis, haptotaxis and angiogenesis are numerous and have been widely studied. Several results exist that concern the gain of L p integrability but methods for proving regularizing effects in L ∞ are still very few. Here, we consider a special example, related to the Keller-Segel system, which is both illuminating and singular by lack of diffusion on the second equation (the chemical concentration). We show the gain of L ∞ integrability (strong hypercontractivity) when the initial data belongs to the scale-invariant space. Our proof is based on De Giorgi's technique for parabolic equations. We present this technique in a formalism which might be easier that the usual iteration method. It uses an additional continuous parameter and makes the relation to kinetic formulations for hyperbolic conservation laws.
Fichier principal
Vignette du fichier
Perthame_Vasseur_revised.pdf ( 213.31 Ko ) Télécharger
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01374730, version 1 (01-10-2016)

Identifiants

Citer

Benoît Perthame, Alexis F. Vasseur. Regularization in Keller-Segel type systems and the De Giorgi method. Communications in Mathematical Sciences, 2012, 10 (2), pp.463 - 476. ⟨10.4310/CMS.2012.v10.n2.a2⟩. ⟨hal-01374730⟩
531 Consultations
71 Téléchargements
Dernière date de mise à jour le 03/11/2024
comment ces indicateurs sont-ils produits

Altmetric

Partager

Gmail Facebook Twitter LinkedIn Plus