Learning Model Transformation Patterns using Graph Generalization
Résumé
In Model Driven Engineering (MDE), a Model Transforma-tion is a specialized program, often composed of a set of rules to transform models. The Model Transformation By Example (MTBE) approach aims to assist the developer by learning model transformations from source and target model examples.In a previous work, we proposed an approach which takes as input a fragmented source model and a target model, and produces a set of fragment pairs that presents the many-to-many match-ing links between the two models. In this paper, we propose to mine model transformation patterns (that can be later transformed in trans-formation rules) from the obtained matching links. We encode our models into labeled graphs that are then classified using the GRAAL approach to get meaningful common subgraphs. New transformation patterns are then found from the classification of the matching links based on their graph ends. We evaluate the feasibility of our approach on two represen-tative small transformation examples.
Origine :
Fichiers éditeurs autorisés sur une archive ouverte
Loading...